MARIPOSA

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

USER’'S MANUAL



Mariposa User Manual v.1.0 2

Mariposa is copyrighted by the Regents of the University of California. Permission to
use, copy, modify, and distribute this software and its documentation for educational,
research, and non-profit purposes and without fee is hereby granted, provided that both
the copyright notice, this permission notice, and the following two paragraphs appear in
supporting documentation. Permission to use, copy, modify, and distribute is granted
provided the name of the University of California not be used in advertising or publicity
pertaining to distribution of the software without specific written prior permission.
Permission to incorporate this software into commercial products can be obtained from
the Campus Software Office, 1150 Shattuck Ave., University of California, Berkeley,
Cdlifornia 94720. The University of California makes no representations about the
suitability of this software for any purpose. It is provided without express or implied
warranty.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMSANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED THEREUNDER IS
ON AN “AS IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.



Mariposa User Manual v.1.0 3

TABLE OF CONTENTS

L INTRODUGCTION ...ttt sttt sttt bbb e b e sbe e sbe e sbe e sbe e sbe e sbe e s st e saeesaeeseeesaeesaeesntesneesneenneas 5
L1 WWHAT ISMARIPOSA? ...t etee ettt ettt ettt s e sttt e e bt oo h e e e s st e s b et e R et e ah bt e sabe e s b et e b et e ahne e snbeesnbeeebneennes 5
L2 USING THISIMANUAL ...ttt ettt ettt ettt ettt ettt e bt ebe e ss e e st e s b e e e R e e sh b e e sabe e sab et e be e e sbe e e smbeesnbeeenneennes 6
1.3 OVERVIEW OF THE ARCHITECTURE .....uttiittteiteesireesteeasseeessseessteessesaaseeessseesmseesanesaaneeesnneesnneesnnessnesennns 6
2. POSTGRES ...t e b e ettt e be bbb 8
2.1 THE QUERY LANGUAGE, POSTGRES SQL......ccttiiiiiiiiiiiiesie ettt sttt st st 9
2.1.1 Creating @ NEW ClaSS ......cciueeiiieiieeesiie st se e st e st e s e e st e et e e sr e e sn e e snbeesnte e e saeeesnteesnreeereeennes 10
2.1.2 Populating @ Class With INSLANCES..........ccuieiiiriiie et r et e e reeennes 10
2.1.3 QUENYING @ ClASS ...civeieieieiieesee ettt e sttt e st e s e e e st e st e e s e e ate e e be e e asee e snteesnteeateeeaseeesnteesnreeerenennes 11
2.1.4 Redirecting SELECT QUETTES.....cccueeeitieeieieeiieessteeesteeesateestesssteeessee e snteesnteesteeesneeesnsessnsessnsesenses 12
2.1.5 J0INS BELWEEN ClASSES ....eeiiiviee ettt ettt ettt e e st e e e st e e e s e abae e e s ebbe e e e sabbeeessabaeeesbbeeessnbeeeenans 13

P LG U T« o = 1= SRR R SRR 13

2. 1.7 DEELIONS ...ttt et e e et e e s et e e e st e e e s b b et e s et ee e e s eabe e e e s bbeeeaaabaeeeaaabeeeeaabaeeenans 14
2.1.8USING AQOregate FUNCLIONS. ......ciuiiitiiiieitie ettt sttt et e 14
2.2 ADVANCED POSTGRES SQL FEATURES........cci ettt sttt sttt st sree 15
2.2. L INNEITTANCE ...ttt e e e e st e e e e b b e e e s eabae e e s eabe e e e sbbeeeeaabaeeeaabbeeeeabaeeeaans 15
222 TIME TIAVEL «..eeii ettt et e e et e e et e e e s et b e e e e st b e e e s eabeeeeseabeeeesabbeeesaabaeeesnsbeeesaseeeennns 16
2.2.3 NON-ALOMIC VAIUES. AITAYS ....veeveetiertieitee st sttt sttt seee st sae ettt s ettt beebe et ebe e 16
2.3 POSTGRES EXTENSIBILITY ..tiiutttetttestteesreesteeassesassseessseessesaasessssseesmseessessasessssssesssessasessasesssseeesnnes 18
2.3.1 The POSTGRES TYPE SYSLEIM......ccitiieitieeieieesieessteeesteeessteestessnteeesseeesnteesnteesteeesseeesnsessnsesssesenses 18
2.3.2 About the POSTGRES System CatalOgS ......cc.veeeierrriereiieeiieessieeesieeeseeeesreessseessseeesneessnsessnsessnses 18
24 EXTENDING SQL: FUNCTIONS . ...ttt sttt st st sttt steesbeesbeesbeesbeesbeesbeesbeesbeesreens 21
2.4.1 Query Language (SQL) FUNCLIONS.........couiiiiiiiriieiie ettt s 21
2.4.1.1 SQL FUNCLIONS ON BASE TYPES....eeiutieteiiieeiteesttestesesteesteessteessasessesssseesssesssssassessssessssessssesssessssessssesnsns 21
2.4.1.2 SQL FUNCtions 0N COMPOSITE TYPES ....ecuieiieeiieeiteeesieeeieesteessaeesseesbeessbesssseesseeesbeessseessseesseesssesssseessns 21
2.4.2 Programming Language FUNCLIONS ........ccueeiiiriiee e cie e s see e stee e sne e e st e snee e snee s snaeesnee e 23
2.4.2.1 Programming Language FUNCLIONS 0N BESE TYPES.....cuuiiieriieeiiieitieesieesteesteesaeeesreesveesnvessnneesnessnvee e 23
2.4.2.2 Programming Language FUNCtions 0N COMPOSITE TYPES......cuueicieeiiieiiresieeeieesreessaeesseessessseesssessseeenns 25
2423 CAVEALS. ...ttt ettt R R et h e e Rt e R e e e Rt R et e R et b e e enne e e e e reeenes 26

25 EXTENDING SQL: TYPES... oo iteitieitieitte sttt sttt ste e sttt st e sbeesbeesbeesbeesbeesbeesbeesbeesbeesbessbeesbeesaeens 27
2.5.1 Functions Needed for a User-Defined TYPE.....ccccueevrieeiieeiieeseeestee e ste e seesee e sree e e e 27
2.6 EXTENDING SQL: OPERATORS.......cootiitieitieiteesiee e st stee st steesteesbeesbeesbeesbeesbeesbeesbeesbeesbessteesreens 29
2.7 EXTENDING SQL: AGGREGATES.......coiteitieieeiteertee sttt sttt sttt st b st sbeesbeesbeesbeesree s 29
2.8 INTERFACING EXTENSIONS TO INDICES......ccoicoi ettt sttt st sre e st et sree 31
29 THE POSTGRES RULE SYSTEM......ooiiiiiiciectee sttt ettt st sttt sre e sreestessreesree s 36
Y = I O 1 TR 37
3L MARIPOSA IMODULES. ...ttt ettt ettt e sttt ettt e si e st e bt abe e sh bt e st e e et e e e ab et e shbe e sabe e e be e e abne e snbeesnbeeeneeennes 37
3.2 A DISTRIBUTED EXAMPLE. ... cttiittteiteeetee ettt stt ettt ettt e st e e sb et sabe e smbe e s be e e snee e snreesnbeesneeennes 38
3.2.1 Creating @ MaripOSa ClaSS .......cuieiieeiieeeiieeesieeseesteeesteeesreeessteesteeesteeesneeesnteesnseeesseeesnseesnsenans 39
3.2.2 Flitting @ Class iNtO FragmENtS .......cocuieiiie e e e et e see e se s e st e e ree e sne e s ee e e sree e sneeesnreeans 40
3.2.3 MOVING FragMENLS.......ceiiieiieeeitie e st e steeestee e stee e s e e s e e e st e e sateessteesteeesteeesseeesnteeantaeesseeeaneeesnsenans 41
3.2, 4 COPYING B FTAgIMENT ....eiiiiiieeie ettt ettt b e et beenb e e rbe e be e be e be e sbeesbeebe e 42
3.3THE MARIPOSA REPLICA SYSTEM .....oootiiitiitie ettt 42
3.3, L Creating @ COPY ...eeveeeeeieeteeieete et e it ste e ste e be e be e be e be bt e be e abe e sbe e be e bt e be e be e abe e be e b e b e b e be e 43
3.3. 2 DrOPPING 8 COPY -euveenreeieeteeieeteerte bt steesteeste bt e bt e sbeeabe e be e sbeesbeesbe e beeabeenbeeabeenbeeabeeabeenbeebe e e 43
GRSV, ()Y, 1 1o IF- W X0 o)V PSPPSR 43
34 MARIPOSA NAME SERVICE ..ottt snaesnneanns 43

341 SNG UP NAITIE SEIVICE ..ttt ettt et sb e bbbt b e ettt et et e b e b e 44



Mariposa User Manual v.1.0 4

3.4.2 Fecifying A Primary NAIME SEIVES ....c.veiiiieeiie e cieeseeestee e stee e ssteeste e e stee e snee e snteesnseeesseeesneeesnsenans 45
3.5 THE MARIPOSA DATA BROKER......cooii ettt estee sttt et snee e snae e nnte e neeennes 45
3.6 QUERY PROCESSING IN MARIPOSA ...ttt estee et e st et e e snte e ste s te e e snee e snae e sntessneeennes 47

B R I Lo =T 107 0= SRS 47

3.6.1.1 Fragmented QUENY PLaNS.........iiiiiiie ettt et et e et e et ssb e e saseebeeesbeessseessaaeseaans 47
3.6.2 ThE QUENY BIOKEY ......eeeeeee ettt et s e et e e st e e snee e snbe e e teeesreneaneeesnrenans 49
BB 2. L BIl CUINVES ...ttt bbbt b et he e s bt st ebe e bt e s b e e bt e bt e st e e bt e bt e heeeb e e b e ennenbeennenneas 50

BuB. 2.2 PlaN CRUNKS ...ttt bbbt sh bt e s e bt e bt e a b e e bt e bt he e bt e e nr e teerennean 51
3B.8.2.3 Bil PrOtOCOIS. ...ttt b et ebe bt s e bt e bt ab e e bt e bt e se e nb e e b e s nt et e ereanean 52
3.6.2.3.1 The SN0 PrOtOCO ......c.eiiiieiiiiee ittt bttt nbe et e e s e 52
3.6.2.3.2 ThE LONG PrOtOCOL ......eiiiieiieeiie ettt sttt ettt et s e e sae e e beeesbeessseessaeesseesnbaensnaensenans 53

BTG B 1 1= =T (o [ SRS 53
B0 154 I =TT o 1 oo PSSRSO 53
3.6.3.2 The plan and rtable global VariablES...........cocuiiiii i 54
3.6.3.3 The SUDCONraCt COMMANG. ......ccueeiriiieiteeie ettt sttt s sb et st b e sb e b e s e nbeenneeneas 56
NSRS gl o = 2T [0 (= g ot ] o AP SRPSSORRSPR 56

4. ADMINISTERING POSTGRESAND MARIPOSA.......o ottt tee st nes 58
] FFREQUENT T ASK S ..uuutuueeeeeeeeseesssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsnns 58

4.1.1 Sarting the STE MANAGES ......eeeceeeiiee e eiee e se e se e e et e e sree e s e e st e e e sree e sreeesnbeeabeeesreeesneeeanrenans 58

4.1.2 Shutting DOWN the POSLMASLES ........eveiiieiiee e ee et ste s e e et e e sree e sne e s e e e sree e sneeesneeeans 59

4.1.3 Adding and REMOVING USEr'S .......cieiieeiiieeitie e ste e se s e et e e sate e sse st eestee e snae e snteesbeeesreeesneeesnneeans 59

A1 A PEriO0iC UPKEED ...ttt ettt ettt ettt ettt b e et b e b e b e b e be e be e sbe e be e be e nbe et e b e 59

BT 001 oo [ TSPV 59
2.2 INFREQUENT TASKS...uuutuueeeeeeeeeeseessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 60

4.2.1 Cleaning Up AfLEr CrashiES .....ccieieiieeiiieeitie e stte st e s e et e s ee e ste et e e stee e snae e snte e s nbeeesreeesneeesnneeans 60

4.2.2 Moving Database DIFECLOMIES ......cciuueeiieeeieeesie st e s ee et e e sree e ste e s e e e st e e sreeesnteesteeesseeesneeesnreeans 62

4.2.3Updating Dat@bhasSes .........ecivuereriiieiieesieeesee e see s e e s e e st e saee e s e et e e st e s e s e e e e e nrae e anreenreean 63
2.3 DATABASE SECURITY teteutteeeeitteeessteeeesasteeeeaaseeeessseneesanseneesassesessnsseeessnssneessssensssassesessnssnsessnseneesnnsenees 63

G T I = = 03 OSSPSR 63

4.4 QUERYING THE SYSTEM CATALOGS. ....ceiiiiurrteeeeeeesiiutteeeeseessisssssssessesssiassstsseseessssmmssssseesesssimnsrsssseeesns 63



Mariposa User Manual v.1.0 5

1. INTRODUCTION

1.1 What is Mariposa?

The Mariposa distributed database management system is an ongoing research project at

the University of California at Berkeley. Mariposa addresses fundamental problems in

the standard approach to distributed data management. We bdlieve that the underlying
assumptions traditionally made while designing distributed data managers do not apply

to today's wide-area network (WAN) environments. To date, distributed database
management systems have been designed for local-area networks (LAN’s) with few
servers operating within one administrative domain, such as one company or one
department within a company. Furthermore, these systems assume uniformity of all
processors and network connections within the system. Data movement in these systems
is a very “heavyweight” operation and is performed manually by a database
administrator. The explosive growth of distributed computing, illustrated by the World
Wide Web, dictates an entirely different set of assumptions.

Mariposa allows DBMS'’s which are far apart and under different administrative
domains to work together to process queries. Furthermore, we have introduced an
economic paradigm in which processing sites buy and sell data and query processing
services. Not only does this aproach reflect the emerging reality of a commercialized
Internet, it has also allowed us to address many of the problems inherent in designing a
wide-area distributed DBMS. Mariposa has been designed with the following principles
in mind:

e Scalability to a large number of cooperating sites. In a WAN environment,

there may be a large number of sites. Our goal is to scale to 10,000 servers.

¢ Local autonomy. Each site must have control over its resources. This includes
which objects to store and which queries to run. Query and data allocation
cannot be done by a central, authoritarian query optimizer.

« Data mobility. It should be easy and efficient to change the “home” of an
object. Preferably, the object should remain available during movement.

¢ No global synchronization. Updates and schema changes should not force a
site to synchronize with all other sites. Otherwise, many common operations
will have exceptionally poor response time.

« Easly configurable policies. It should be easy for a local database
administrator to change the behavior of a Mariposa site. A Mariposa system
should respond gracefully to changes in user activity and de¢ssapatterns to
maintain low response time and high system throughput.



Mariposa User Manual v.1.0 6

1.2 Using ThisManual

This manua is divided into two main parts. Section 2 contains a description of
POSTGRES, the single-site database management system distributed as part of
Mariposa. Readers who are familiar with POSTGRES may want to skim these sections
or skip over them entirely. Section 3 describes the Mariposa system itself. This manual
assumes that you have already installed Mariposa successfully on all the sites in your
system. For information on how to download and install Mariposa, see the Installation
and Setup Manual.

1.3 Overview of the Architecture

In Mariposa, all distributed DBMS issues (query optimization, data movement, name
service, etc) are reformulated in microeconomic terms.  Implementation of the
economic paradigm involves a number of entities and mechanisms. In this section, we
describe the architecture and process structure of Mariposa. We begin with an example,
pictured in Figure 1.

A company that sells widgets has offices in San Francisco, Chicago, New York and
Miami. The company’s database includes a table called WIDGETS which contains
pricing and inventory information on all the company's widgets. The widgets are
warehoused in New York and Miami, so the company keeps half the WIDGETS table in
New York and the other half in Miami. In Mariposa, splitting a table is called
fragmentation and the pieces that make up a table aled fragments. In the
example, the WIDGETS table is fragmented into WIDGETS1 and WIDGETS2.

If the purchasing manager in the San Francisco office wanted to retrieve all the records
from the WIDGETS table, she would enter a query into a frontend application. In SQL
(Standard Query Language) she would enter “SELECT * FROM WIDGETS”. The site
where a query is entered, San Francisco in this case, ®ithesite. The purchasing
manager’s query is sent from the frontend application to the Mariposa program running
on the server in San Francisco. The query is passed thrquaglsen, which checks for
syntactic correctness and performs type checkingp@mimizer, which produces a
guery plan that describes the order in which different steps in the plan will be executed;
and afragmenter, which changes the plan produced by the optimizer to reflect the data
fragmentation. The final result produced by the fragmenter i$rdgeented query

plan. In order to do their work, the parser, optimizer and fragmenter need information
about data types, fragment location, etc. This information is maintained by a Mariposa
nameserver. In the example, the name server is in the Chicago office.

The fragmented query plan describes the operations that will be performed in order to
execute the query, and the order in which they will be carried out. In the example, the
purchasing manager’s query, “SELECT * FROM WIDGETS” is represented by a query
plan which scans the two WIDGETS fragments, WIDGETS1 and WIDGETS2, and
merges the result. The fragmented query plan is passeddadhebroker, whose job

it is to decide where each piece of the fragmented query plldbevexecuted. The query
broker uses one of two protocols:

¢ In thelong protocol, the query broker contacts thédder module at each
potential processing site. The broker waits for responses from the bidders before
selecting the best ones. The long protocol is illustrated in Figure 1.



1) Purchasing
Manager in San
Francisco submits
query using frontend
application.

Mariposa User Manual v.1.0

In the short protocol, the query broker uses information collected from the
name server to decide which sites will process the query. It does not contact the

processing sites.

After the query broker has specified the processing sites, the baclkeodidnator
module takes over.
collects the results, and returns the answer to the client program.

Query ‘ SELECT * FROM W DGETS; ‘

ﬂ

YT

2) Frontend passes query
to Mariposa process.

3) San Francisco site
contacts name server.

The coordinator notifies the remote sites to begin processing,

‘ SELECT * FROM WIDGETS;.

4) Fragmented query plan
is passed to query broker

PARSER
OPTIMIZER
FRAGMENTER

San(Francisco

7) Query Broker selects
processing sites and
passes complete plan to
coordinator.

MERGE

SCAN(W/DGETSJ). ‘ SCAN(W/DGETSZ).

QUERY
BROKER

MERGE
in San Francisco

SCAN(WIDGETS1)
in New York

SCAN(WIDGETS2)
in Miami

COORDINATOR

Figure 1: Mariposa Architecture Example

6) Bidders at
processing sites
send back bids.

\

5) Query broker sends
requests for bids to
processing sites in New
York and Miami.

LG

’\) New York

BIDDER

8) Coordinator
notifies processing

sites to perform work.

Miami

9) Each processing site
passes query fragment to
local, single-site DBMS.

This release of Mariposa is based on the POSTGRES exterdtdra database
management system. We have included a description of the version of POSTGRES

distributed with Mariposa in the next section.



Mariposa User Manual v.1.0 8

2. POSTGRES

The single-site database engine distributed with Mariposa is POSTGRES. The version
of POSTGRES digtributed with Mariposa is a pre-alpha release of POSTGRES95. Not
all of the features of POSTGRESO5 are implemented in this version. We are planning
on releasing a version of Mariposa with support for POSTGRES95 in the future. The
commands and keywords listed in Table 1 are not supported by the version of
POSTGRES released with Mariposa.  We have listed equivalent commands and key
wordsiif they exist.

Command or Key Word Description Equivalent

ASC, DESC Ascending/Descending key USING ‘<* for ASC

wordsin ORDER BY clause
USING > for DESC

CAST Used to typecast constants or | “::" operator
parameters

COMMIT, ROLLBACK Transaction commit, rollback none

CREATE DATABASE Create a new database CREATEDB

DROP DATABASE Destroy a database DESTROYDB

DELIMITERS Denotes delimiters between fieldsione

in COPY statement

GRANT, REVOKE, Used for access control none
PRIVILEGES, PUBLIC
EXPLAIN Explain optimizer choice of none
guery plan
LIKE LIKE operator ‘~' operator

Table 1: Unsupported Commands and Key Words

In addition to commands and key words, the versioPOETGRES distributed with
Mariposa has different built-in types thBOSTGRES95. The POSTGRES95 types and
their equivalents are listed in Table 2.



Mariposa User Manual v.1.0 9

POSTGRESO95 Type Mariposa POSTGRES Type
int, integer, smallint int2, int4

real, float float4, float8

char(length), varchar(length) char[length], char16

date, time abstime

Table 2: POSTGRES 95 Types and their Equivalents

The POSTGRES95 huilt-in aggregates avg, sum, min and max have type-specific
equivalents in the POSTGRES digtributed with Mariposa. These are listed in Table 3.
The built-in aggregate count is the same in both versions.

POSTGRES95 Aggregate | POSTGRES Type-Specific Equivalents
avg intdave, int2ave, floatdave, float8ave
sum int4sum, int2sum, float4sum, float8sum
min int2min, int4min, float4min, float8min
max int2max, intdmax, floatdmax, float8max

Table 3: POSTGRESO5 Aggregates and their Equivalents

2.1 THE QUERY LANGUAGE, POSTGRES SQL

This section provides an overview of how to use POSTGRES SQL to perform simple
operations. POSTGRES SQL is a variant of SQL-3. It has many extensions such as an
extensible type system, inheritance, functions and production rules. These extensions
were in the original POSTGRES query language, POSTQUEL.

This manual provides an introduction to POSTGRES SQL. There are numerous books
on SQL, such as [MELT93] or [DATE93]; consult them for a more detailed analysis of
SQL. Moreover, many of the features of POSTGRES SQL are not part of the ANSI
standard.

The following examples assume that you have installed Mariposa on at least one site,
and that you have created a database. You must also have the site manager running at
the site where you are issuing queries. See the Installation and Setup Manual .

The examples in this manual can be found in src/tutorial. Refer to the
README filein that directory for detailed instructions. To start the tutorial, enter these
statements:

% cd src/tutorial

% npsqgl <dat abase nane>



Mariposa User Manual v.1.0 10

The following message will appear:
Wel cone to the Mariposa interactive sqgl nonitor:
type \? for help on slash conmands
type \qg to quit
type \g or terminate with senicolon to execute query
You are currently connected to the database: <database-nane>

<dat abase- nane>=> \i basi cs. sql

The\i command reads in queries from the specified files. The - s option starts single
step mode which pauses before sending a query to the backend. Queries in this section
areinthefile basi cs. sql .

2.1.1 Creating a New Class

One of the fundamental concepts in POSTGRES is that of a class. A classis a hamed
collection of object instances. Each instance has the same collection of named attributes

of which each attribute is a specific type. Furthermore, each instance has a permanent
object identifier (OID) that is unique throughout the installation. Because SQL syntax
refers to tables, the terms “table” and “class” are used interchangeably throughout this
manual. Similarly, a row is an instance and columns are attributes.

You can create a new class by specifying the class name as well as all attribute names
and their types:
CREATE TABLE W DGETS (
PART_NO int4,

LOCATI ON char 16, -- warehouse: Mam or New York
ON_HAND int4, -- quantity on-hand
ON_ORDER i nt 4, -- quantity on order
COW TTED i nt 4 -- quantity sold but not shipped

)

Note that keywords are case-insensitive whereas identifiers are case-sensitive.
Therefore, ‘CREATE TABLE’ could have been typed ‘create table’ or ‘Create Table’
but ‘charl6’ could not have been typed any other way. POSTGRES SQL supports the
standard SQL types (with the exceptions noted in Table 2). POSTGRES is unique in
that it can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not keywords. For example, you could define a type
called ‘CHAR16’ distinct from ‘charl6’ and define attributes of type ‘CHAR16’,
although this would be confusing, to say the least.

As described so far, the POSTGRE&Sat e t abl e command is the same command
used to create a table in a traditional relational system. Howe@8TGRES tables
(classes) have properties that are extensions of the relational model.

2.1.2 Populating a Class with Instances

The insert statement is used to populate a class with instances:
I NSERT | NTO W DCETS
VALUES (1, ‘New York’, 500, 1500, 300);

The copy command is used to load large amounts of data from flat (ASCII) files on the
client to the POSTGRES server. For example, the command:
COPY WIDGETS FROM ‘src/tutorial/widgets.txt’;

will copy the entries in the text file ‘src/tutorial/widgets.txt’ into the WIDGETS table.



Mariposa User Manual v.1.0 11

2.1.3 Querying a Class

The W DCGETS class can be queried with normal relational selection and projection
gueries. An SQL sel ect statement is used to do this. The statement is divided into a
target list (i.e, the part that lists the attributes to be returned) and a qualification (i.e.,
the part that specifies any redtrictions). For example, to retrieve al the rows of
W DCETS, type:

SELECT * FROM W DCETS;

and the output will be;

PART_NO | LOCATI ON ON_HAND | ON_ORDER | COW TTED
1 New Yor k 500 1500 300
2 New Yor k 3000 0 1000
3 M armi 10000 5000 8000
4 M armi 8500 0 200
5 New Yor k 2500 2000 2000
3 New Yor k 1800 200 750
2 M armi 9300 700 5000
4 New Yor k 3200 0 0

6 New Yor k 1800 5000 1500
6 M armi 11000 0 3000

You may specify any aribitrary expressions in the target list. For example, to list the
number of widgets on order plus the number on hand, you could type:

SELECT PART_NO, LOCATI ON,

(ON_ORDER + ON_HAND) AS TOTAL_QTY

FROM W DCETS;

PART_NO LOCATI ON TOTAL_QTY
1 New Yor k 2000
2 New Yor k 3000
3 M anmi 15000
4 M anmi 8500
5 New Yor k 4500
3 New Yor k 2000
2 M anmi 10000
4 New Yor k 3200
6 New Yor k 6800
6 M anmi 11000

Arbitrary Boolean operators ( e.g., and, or, and not) are allowed in the qualification of
any query. For example:

SELECT *

FROM W DGETS

WHERE location = ‘Miamf’

and (ON_HAND + ON_ORDER - COMMITTED) <= 8000;

PART_NO | LOCATION ON_HAND  ON_ORDER COMMITTED
3 Miami 10000 5000 8000
2 Miami 9300 700 5000
6 Miami 11000 0 3000

To specify the results of a select to be returned in a sorted order use ORDER BY':



Mariposa User Manual v.1.0 12

SELECT *
FROM W DGETS
ORDER BY LOCATI ON;

PART_NO | LOCATI ON ON_HAND | ON_ORDER | COW TTED
6 M armi 11000 0 3000
2 M armi 9300 700 5000
4 M armi 8500 0 200
3 M armi 10000 5000 8000
2 New Yor k 3000 0 1000
1 New Yor k 500 1500 300
3 New Yor k 1800 200 750
6 New Yor k 1800 5000 1500
5 New Yor k 2500 2000 2000
4 New Yor k 3200 0 0

To group records together, use GROUP BY. GROUP BY is generally used with
aggregates:

SELECT PART_NG,

i nt4sum( ON_HAND) as TOTAL_ON_HAND,

i nt 4sum( ON_ORDER) as TOTAL_ON_ORDER,

i nt 4sum( COW TTED) as TOTAL_COWM TTED

FROM W DGETS

GROUP BY PART_NO

ORDER BY PART_NG,

PART_NO | TOTAL_ON HAND | TOTAL_ON ORDER | TOTAL_COMM TTED
1 500 1500 300

2 12300 700 6000

3 11800 5200 8750

4 11700 0 200

5 2500 2000 2000

6 12800 5000 4500

To find out more about aggregates, see Section 2.1.8.

2.1.4 Redirecting SELECT Queries

Any select query can be redirected to anew class
SELECT * | NTO TABLE tenp from W DGETS;

This query implicitly creates a new class t enp with the attribute names and types
specified in the target list of the SELECT INTO command. Thus, you can perform
operations on the resulting class as well as on other classes:

SELECT * FROM t enp;



Mariposa User Manual v.1.0 13

PART_NO | LOCATI ON ON_HAND | ON_ORDER | COW TTED
1 New Yor k 500 1500 300
2 New Yor k 3000 0 1000
3 M armi 10000 5000 8000
4 M armi 8500 0 200
5 New Yor k 2500 2000 2000
3 New Yor k 1800 200 750
2 M armi 9300 700 5000
4 New Yor k 3200 0 0

6 New Yor k 1800 5000 1500
6 M armi 11000 0 3000

2.1.5 Joins Between Classes

So far this section has shown queries that access one class at a time. Queries can access
multiple classes at once, or access the same class in such a way that multiple instances
of the class are being processed at the same time. A query that accesses multiple
instances of the same or different classes at onetimeiscalled a join query.

For example, to find the widgets are on-hand in greater quantity in Miami than in New
York:

SELECT WL. PART_NO, WL. ON_HAND as M AM, W2. ON_ HAND as NY

FROM W DGETS W, W DGETS W2

WHERE W1.LOCATION = ‘Miami’ and

W2.LOCATION = ‘New York’ and

W1.PART_NO = W2.PART_NO and

W1.ON_HAND > W2.0N_HAND;

PART_NO MIAMI NY
2 9300 3000
3 10000 1800
4 8500 3200
6 1100 1800

In this case, both WL and W2 are surrogates for an instance of the classwi dget s, and

both range over all instances of the class. In relational database systems, WL and W2 are
known as “range variables.” In addition, a query can contain an arbitrary number of
class names and surrogates.

2.1.6 Updates

To update existing instances, use thmlat e command. For example, to reflect the
delivery into New York of the widgets with PART_NO = 1 that were on order:

UPDATE W DGETS

! The semantics of such ajoin are that the qualification is a truth expression defined for the Cartesian product of the
classesindicated in the query. For those instances in the Cartesian product for which the qualification is true,
POSTGRES computes and returns the values specified in the target list. POSTGRES SQL does not assign any
meaning to duplicate valuesin such expressions. This means that POSTGRES sometimes recomputes the same
target list several times—this frequently happens when Boolean expressions are connected with an or. To remove
such duplicates, you must use the SELECT DISTINCT statement.



Mariposa User Manual v.1.0 14

SET ON_HAND = ON_HAND + ON ORDER, ON ORDER = 0
WHERE PART_NO = 1 and
LOCATION = ‘New York’;

SELECT * FROM WIDGETS
WHERE PART_NO =1 and
LOCATION = ‘New York’;

PART_NO LOCATION| ON_HAND ON_ORDEHR COMMITTED
1 New York |2000 300

[=}

2.1.7 Deletions

Deletions are performed using the delete command:
DELETE FROM WIDGETS
WHERE ON_HAND = 0 and
ON_ORDER =0 and
COMMITTED = 0;

All widgets with zero quantity on-hand, on-order and sold are deleted. (In this example,
there are no such records, so this DELETE statement has no effect).

Bewary of queries such as.
DELETE FROM WIDGETS;

Without a qualification, the del et e command deletes all instances of the given class,
leaving it empty. The system will not request confirmation before performing this
command.

2.1.8 Using Aggregate Functions

Asin most other query languages, POSTGRES supports aggregate functions. However,
in the current implementation of POSTGRES, the usage of aggregate functions is
limited. Specifically, while there are aggregates to compute such functions as the count,
sum, average, maximum and minimum over a set of instances, aggregates can only
appear in the target list of a query and not in the qualification (i.e, the wher e clause).
For example:

SELECT int4max(ON_HAND) as MAX_ON_HAND

FROM WIDGETS;

MAX_ON_HAND
11000

However, this query won't be accepted by POSTGRES:
SELECT PART_NO, LOCATI ON, ON_HAND
FROM W DGETS
WHERE ON_HAND = i nt 4max( ON_HAND) ;

As mentioned in Section 2.1.3, aggregates are commonly used with GROUP BY clauses.



Mariposa User Manual v.1.0 15

2.2 ADVANCED POSTGRES SQL FEATURES

This section discusses those features that distinguish POSTGRES from conventional
data managers. These features include inheritance, time travel, and non-atomic data
values (i.e., array- and set-valued attributes).

Examples in this section can be found in advance. sqgl in the tutorial directory.
(Refer to the introduction of the previous chapter for details).

2.2.1 Inheritance

The following examples illustrate inheritance in POSTGRES. The statements below
create the class cities as well as the capitals class which contains all the state capitals.
Thecapi t al s classinheritsfromthe ci ti es class.

CREATE TABLE cities (

nanme text,

popul ati on fl oat8,
altitude int4d -- (in ft)
)

CREATE TABLE capitals (
state char2
) INHERITS (cities);

In this case, an ingtance of capitals inherits al attributes (i.e, nane,

popul ation, and altitude) from its parent, cities. The type of the
attribute nane ist ext, a built-in POSTGRES type for variable-length strings. The
type of the attribute popul ati on is float8, the POSTGRES built-in type for double-
precision floating point number. The type for the al tit ude attribute isint4, a
built-in POSTGRES type for regular four-byte integer numbers.

The capi t al s class has an extra attribute, st at e,  which contains the capital's
state. INPOSTGRES, a class can inherit from zero or more other cfassesddition,
a query can reference either all instances of a class or all instances of a class plus all of
its descendants. For example, the following query finds all the cities that are situated at
an attitude of 500 feet or higher:

SELECT name, altitude

FROM cities

VWHERE al titude > 500;

name al titude
Las Vegas 2174
Mar i posa 1953

On the other hand, to find the names of all cities, including state capitals, that are
located at an altitude over 500 feet, the query is:

SELECT c.nanme, c.altitude

FROM cities* ¢

VWHERE c. al titude > 500;

2| e, theinheritance hierarchy is a directed acyclic graph.



Mariposa User Manual v.1.0

which returns:

nane al titude
Las Vegas 2174

Mar i posa 1953
Madi son 845

16

Here the *” after ci ti es indicates that the query should be run aeri es and all
classes belowi ti es in the inheritance hierarchy. Many of the commands discussed
so far—sel ect, update and del et e—support this *” notation. Other
commands, such as taét er command do as well.

2.2.2 Time Travd

POSTGRES supportane travel. This feature enables you to run historical queries. For
example, to find the current population of Mariposa city:
SELECT * FROM cities WHERE name = ‘Mariposa’;

name population  altitude
Mariposa 1320 1953

POSTGRES automatically finds the version of Mariposa’s record valid at the current
time.

You can also specify a time range. For example, to retrieve the past and present
populations of Mariposa, query:

SELECT nane, popul ation

FROM cities[epoch’, ‘now’]

WHERE name = ‘Mariposa’;

Here, “epoch” indicates the beginning of the system cldélall of the examples have
been executed thus far, then the above query returns:

nane popul ati on
Mar i posa 1200
Mar i posa 1320

The default beginning of a time range is the earliest time representable by the system
and the default end is the current time; thus, taetime range can be abbreviated as

RS

2.2.3 Non-Atomic Values. Arrays

One of the tenets of the relational model is that the attributes of a relation are atomic.
POSTGRES does not have this restrictiatitibutes can contain subvalues that can be
accessed from the query language. For example, you can create attributes that are arrays
of base types.

With POSTGRESattributes of an instance can be defined as fixed-length or variable-
length multi-dimensional arrays. Arrays of any base type or user-defined type can be
created. To illustrate this, first create a class with arrays of base types.

3 On UNIX systems, this is always midnight, January 1, 1970 GMT.



Mariposa User Manual v.1.0 17

CREATE TABLE SAL_EMP (

nanme text,
pay_by quarter int4[],
schedul e char16[ ][]

)

The above query creates a class named SAL_EMP with at ext gring (hane), aone
dimensional array of i nt 4 (pay_by_quarter), which represents the employee’s
salary by quarter, and a two-dimensional arraycloér 16 (schedul e), which
represents the employee’s weekly schedule.

To insert values into an array, use tINSERT statement Note that when appending
to an array, enclose the values within braces and separate them by commas. This is not
unlike the syntax for initializing structures in C.

I NSERT | NTO SAL_EMP

VALUES (‘Bill’,

{10000, 10000, 10000, 10000},

{{"meeting”, “lunch™}, {}});

INSERT INTO SAL_EMP
VALUES (‘Caral’,

{20000, 25000, 25000, 25000},
{{"talk”, “consult™}, {"meeting”}});

By default, POSTGRES uses the “one-based” numbering convention for arrays—that is,
an array oh elements starts with array[1] and ends with améy|[

The following query accesses a single element of an array at a time and retrieves the
names of the employees whose pay changed in the second quarter:

SELECT nane

FROM SAL_EMP

WHERE SAL_EMP. pay_by quarter[1] <>

SAL_EMP. pay_by_quarter[2];

nane
Car ol

The following query retrieves the third quarter pay of all employees:
SELECT SAL_EMP. pay_by_quarter[3] FROM SAL_EMP;

You can also access arbitrary slices of an array, (subarrays). The following query
retrieves the first item on Bill's schedule for the first two days of the week.
pay_by_quarter
10000

25000

SELECT SAL_EMP. schedul e[ 1: 2] [ 1: 1]
FROM SAL_EMP
WHERE SAL_EMP.name = ‘Bill’;

schedule
{'meeting’}.{"})




Mariposa User Manual v.1.0 18

2.3 POSTGRES Extensibility

This section discusses how to extend the POSTGRES SQL query language by adding
functions, types, operators, and aggregates.

Standard relational systems store information about databases, tables and columns in

what are commonly known as system catalogs. (Some systems call this the “data
dictionary.”) Although the DBMS stores its internal bookkeeping within the system
catalogs, this information is typically not available to users.

One key difference between POSTGRES and standdedioreal systems is that
POSTGRES stores much more imf@tion in its catalogs than relational systems do—

not only information about tables and columns, but also information about its types,
functions, access methods, and so forth. These classes can be modified and extended by
the user, thereby extending the built-in capabilitiesPGISTGRES. By comparison,
conventional database systems can only be extended by changing hardcoded procedures
within the DBMS or by loading modules specially-written by the DBMS vendor.

POSTGRES is also unlike most othetal managers in that the server can incorporate
code written by users through dynamic loading. That is, a user can specify an object
code file (e.g., a compiledo file or shared library) which implements a new type or
function and POSTGRESIWoad it as required. Code written in SQL is even easier to
add to the server.

2.3.1 The POSTGRES Type System

POSTGRES types are divided into two categories: base types and composite types. Base
types are those likent 4, which are implemented in a programming language such as

C. They generally correspond to what are often known as “abstract data types”.
POSTGRES can only operate on these types through methods provided by the user.
Furthermore, POSTGRES understands the behavior of such types only to the extent that
the user describes them.

Composite types are created whenever a user creates ALRRSETS is an example of

a composite type. POSTGRES stoafisnstances of these types in a file. Information
about the attributes of composite types are stored in one dPARTGRES system
catalogsifg_att ri but €) and can by queried like any other table.

POSTGRES base types are further divided intidt-bu types and user-defined types.
Built-in types (likei nt 4) are those that are compiled into the system and distributed
along with the source code. User-defined types, as the names suggests, are defined by
the user. These are described in detail in Section 2.5.

2.3.2 About the POSTGRES System Catalogs

All system catalogs have names that begin with “pg_". The following classes contain
information that may be useful to the end user. There are other system catalogs, but
there should rarely be a reason to query them directly.



Mariposa User Manual v.1.0

19

catalog name description

pg_database databases

pg_class classes

pg_éttribute class attributes

pg_index secondary indices

pg_prac procedures (both C and SQL)
pg_type types (both base and complex)
pg_operator operators

pg_aggregate aggregates and aggregate functions
pg_am access methods

pg_amop access method operators
pg_amproc access method support functions
pg_opclass access method operator classes

The POSTGRES Reference Manual gives a more detailed explanation of these catalogs
and their attributes. However, Figure 3 shows the mgjor entities and their relationships
in the system catalogs. (Attributes that do not refer to other entities are not shown unless
they are part of aprimary key.)

This diagram becomes clear when you examine the catalogs’ contents and see how they
relate to each other. The main points are:

e Several of the following sections present various join queries on the system
catalogs that display information needed to extend the system. This diagram
should make these join queries (which are often three- or four-way joins) more
understandable, because the diagram shows that the attributes used in the
gueries form foreign keys in other classes.

¢ Many different features (i.e, classes, attributes, functions, typssgssa
methods, etc.) are tightly integrated in this schema. A simple create command
may modify many of these catalogs.

«  Types and procedurkare central to the schema. Nearly every catalog contains
some reference to instances in one or both of these classes. For example,
POSTGRES frequently uses type signatures (e.g., of functions and operators)
to identify unique instances of other catalogs.

e« There are many attributes and relationships that baveous meanings, but
there are many that do not; for example, those that have to do with access
methods. The relationships betwgegm am pg_anop, pg_anproc,
pg_oper at or andpg_opcl ass are particularly hard to understand are in

4 This manual uses the words procedure and function more or less interchangably.



Mariposa User Manual v.1.0 20

depth (in the section on interfacing types and operators to indices) following
the discussion of basic extensions.

pg_amop
pg_attribute -
amopid

— attrelid -
:: o]
attnum < pg_index
amopopr

P amopselect
‘ indkey(8] ‘ amopnpages
‘ indproc |- ---- {
pg_class ‘ indpred | ‘
Ll oid < indexrelid

‘ relam !

pg_prac
—oi -

pg_type ‘ proname

oid < ‘ prorettype
typrelid - { proargtypes[8] pg_language
typinput ‘ prolang » oid
typoutput
pg_operator
oid [+
pg_opclass
‘ oprname
oid +—
—{ oprleft

—{ oprresult

T T T

‘ oid ‘4—
‘ amgettuple ’7 ‘ oprcom
‘ aminsert ’7 ‘ oprnegate ‘
‘ amdelete ’7 ‘ oprisortop +‘ —4 amid ‘
‘ amgetattr ’7 ‘ oprrsortop B ‘ amopclaid }7
‘ ambeginscan ’7 ‘ oprcode ’7 ‘ amprocnum
‘ amrescan ’7 ‘ oprrest }“ - } amproc ‘
‘ amendscan ’7 ‘ oprjoin }» -
‘ ammarkpos ’7
‘ amrestrpos ’7
| ambuild
KEY:

DEPENDENT INDEPENDENT
‘ foreign key ’7refers to—»{ primary key ‘
/{ non-oid primary key ‘

indicates an alternate primary key

(that is, a unique identifier that may be used to identify an object ‘ non-key

Figure 2: The major POSTGRES system catal ogs.



Mariposa User Manual v.1.0 21

2.4 EXTENDING SQL: FUNCTIONS

An important part of defining a new type is the definition of functions that describe the
type's behavior. While it is possible to define a new function without defining a new
type, the reverse is not true.

POSTGRES SQL provides two types of functions: query language functions (functions
written in SQL) and programming language functions (functions written in a compiled
programming language, such as C). Both query language functions and programming
language functions can take any type of variable as arguments and return any type. This
includes base types, composite types or a combination of both.

Examples in this section can be found imncs. sql andC- code/ f uncs. c.

2.4.1 Query Language (SQL) Functions

Query language functions can be input by a POSTGRES user fromrtimeacal line
and stored in the database. They require no programming experience aside from SQL.

2.4.1.1 SQL Functionson Base Types

The simplest possible SQL function has no arguments and simply returns a base type, such
asi nt 4:

CREATE FUNCTI ON one() RETURNS int4
AS ‘SELECT 1 as RESULT' LANGUAGE ‘sql’;

SELECT one() AS answer;

answer
1

Notice that the function definition included a target list with the name RESULT, but the
target list of the query that invoked the function overrode the function’s target list.
Therefore, the result is labellechswer instead obne.

It's almost as easy to define SQL functions that take base types as arguments. In the
example below, notice how arguments within the function are referred filasafid
ll$21)'

CREATE FUNCTI ON add_en(int4, int4) RETURNS int4
AS 'SELECT $1 + $2; LANGUAGE ‘sq’;

SELECT add_em(1, 2) AS answer;

answer
3

2.4.1.2 SQL Functionson Composite Types

When specifying functions with arguments of composite types (such as EMP), you
must not only state which argument you want (as you did above with “$1” and “$2")



Mariposa User Manual v.1.0 22

but also the attributes of that argument. For example, take the function
doubl e_sal ary that computes what your salary would be if it were doubled.

CREATE FUNCTI ON doubl e_sal ary(EMP) RETURNS i nt 4

AS ‘SELECT $1.salary * 2 AS salary;” LANGUAGE ‘sql’;

SELECT name, double_salary(EMP) AS dream
FROM EMP
WHERE EMP.dept = ‘toy’;

name dream
Sam 2400

Notice the use of the syntax “$1.salary”.

Usualy you can use the notation attribute(class) and class.attribute
interchangeably.
e this is the same as:
e SELECT EMP.name AS youngster FROM EMP WHERE EMP.age < 30
SELECT name(EMP) AS youngster
FROM EMP
WHERE age(EMP) < 30;

youngster
Sam

However, thisis not always the case.

Function notation is important when you want to create a function that returns a single
instance of a complex type. You do this by assembling the entire instance within the
function, attribute by attribute. This is an example of a function that returns a single
EMP instance:

CREATE FUNCTION new_emp() RETURNS EMP

AS 'SELECT V'None\"::text AS name,

1000 AS salary,

25 AS age,

\'none\’::charl6 AS dept;’

LANGUAGE ‘sql’;

In this case you have specified each of the attributes with a constant value, but any
computation or expression could have been substituted for these constants.

Defining a function like this can be tricky. Some of the more important considerations
are:

e« Thetarget list order must be exactly the same as that in which the attributes
appear in the CREATE TABLE statement (or when you executea . * query).

¢ You must typecast the expressions (using : : ) very carefully or you will seethe
following error:

WARN::function declared to return type EMP does not retrieve

(EMP.%)

¢ When calling a function that returns an instance, you cannot retrieve the entire
instance. You must either project an attribute out of the instance or pass the
entire instance into another function:



Mariposa User Manual v.1.0 23

SELECT nare(new_enp()) AS nobody;

nobody
None

Because the parser doesn’t understand the other (dot) syntax for projection when
combined with function calls, you should use the function syntax for projecting
attributes of function return values.

SELECT new_enp().name AS nobody;

wn

WARN:parser: syntax error at or near *“.

Any collection of commands in the SQL query language can be packaged together and
defined as a function. The commands can include updates (i.e., insert, update and
delete) as well as sdect queries. However, the fina command must be a select that
returns whatever is specified as the functiores urn t ype.

CREATE FUNCTI ON cl ean_EMP () RETURNS i nt 4

AS 'DELETE FROM EMP WHERE EMP.salary <= 0;

SELECT 1 AS ignore_this’

LANGUAGE ‘sql’;

SELECT clean_EMP();

ignore_this
1

2.4.2 Programming Language Functions

This section describes programming language functions on base types and on
composites.

2.4.2.1 Programming Language Functions on Base Types

Internally, POSTGRES regards a base type as a “blob of memory.” User-defined
functions over a user-defined base type define the way that POSTGRES operates on the
type. That is, POSTGRESionly store and retrieve the data from disk. It will use the
user-defined functions to input, process, and output the data.

Base types can have one of three internal formats:
e pass by value, fixed-length

e pass by reference, fixed-length

e pass by reference, variable-length

By-value types can only be 1, 2 or 4 bytes in length (even if your computer supports by-
value types of other sizes). POSTGRES itself only passes integer types by value. You
should be careful to define your types so that they will be the same size (in bytes) on all
architectures. For example, theng type is dangerous because it is 4 bytes on some
machines and 8 bytes on others, whereasi thte type is 4 bytes on most UNIX
machines (though not on most personal computers). A reasonable implementation of
thei nt 4 type on UNIX machines might be:

/* 4-byte integer, passed by value */

typedef int int4;



Mariposa User Manual v.1.0 24

On the other hand, fixed-length types of any size may be passed by-reference. For
example, here is a sample implementation of the POSTGRES char 16 type:

/* 16-byte structure, passed by reference */

typedef struct {

char data[ 16];

} char 16;

Only pointers to such types can be used when passing them in and out of POSTGRES
functions.

Finally, all variable-length types must also be passed by reference. All variable-length
types must begin with a length field of exactly 4 bytes, and all data to be stored within
that type must be located in the memory immediately following that length field. The
length field isthe total length of the structure (i.e., it includes the size of the length field
itself). You can definethe t ext type asfollows:

typedef struct {

int4 | ength;

char data[ 1];

} text;

Obvioudly, the dat a field is not long enough to hold all possible strings—it's
impossible to declare such a structure in C. When manipulating variable-length types, be
careful to allocate the correct amount of memory and initialize the length field. For
example, if you want to store 40 bytes int ext structure, you might use a code
fragment like this:

#include “postgres.h”

#include “utils/palloc.h”

char buffer[40]; /* our source data */

text *destination = (text *) palloc(VARHDRSZ + 40);
destination->length = VARHDRSZ + 40;
memmove(destination->data, buffer, 40);

Here are some examples of real functions. Supposef uncs. ¢ look like:
#include <string.h>
#include “postgres.h” /* for charl®6, etc. */
#include “utils/palloc.h” /* for palloc */
int
add_one(int arg)

{
}

return(arg + 1);

charl6 *
concatl6(charl6 *argl, charl6 *arg2)
{
charl6 *new_c16 = (charl6 *) palloc(sizeof(char16));
memset((void *) new_c16, 0, sizeof(charl6));
(void) strncpy(new_c16, argl, 16);
return (charl6 *)(strncat(new_c16, arg2, 16));



Mariposa User Manual v.1.0 25

text *
copytext (text *t)
{
/*
* VARSI ZE is the total size of the struct in bytes.
*
/
text *new t = (text *) pall oc(VARSI ZE(t));
menset (new_t, 0, VARSI ZE(t));
VARSI ZE(new_t) = VARSI ZE(t);
/*
* VARDATA is a pointer to the data region of the struct.
*
/
mencpy((void *) VARDATA(new t), /* destination */
(void *) VARDATA(t), /* source */
VARSI ZE(t) - VARHDRSZ) ; /* how many bytes */
return(new_t);

}

On OSF/1 you type:
CREATE FUNCTI ON add_one(int4) RETURNS int4
AS ‘lusr/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE
‘o
CREATE FUNCTION concatl6(charl6, charl6) RETURNS charl6
AS ‘lusr/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE
‘o
CREATE FUNCTION copytext(text) RETURNS text

AS ‘lusr/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE
‘o

On other systems, you might have to make the filename end in . sl to indicate that it's
a shared library.

2.4.2.2 Programming Language Functions on Composite Types

Composite types do not have a fixed layout like C structures. Instances of a composite
type may contain null fields. Also, composite types that are part of an inheritance

hierarchy may have different fields than other members of the same inheritance
hierarchy. Therefore, POSTGRES provides a procedural interface for accessing fields of
composite types from C.

As POSTGRES processes a set of instances, each instdhte wassed into your
function as an opaque structure of type TUPLE.

Suppose you want to write a function to answer the query
SELECT nane, c_overpai d(EMP, 1500) AS overpaid
FROM EMP
WHERE name = ‘Bill' or name = ‘Sam’

In the query above, you can definec_over pai d as.
#include “postgres.h” /* for charl®6, etc. */
#include “libpg-fe.h” /* for TUPLE */
bool
c_overpaid(TUPLE t, /* the current instance of EMP */
int4 limit)
{
bool isnull = false;
int4 salary;



Mariposa User Manual v.1.0 26

salary = (int4) GetAttributeByName(t, “salary”, &isnull);
if (isnull)

return (false);
return(salary > limit);

}

CGet At t ri but eByNane isthe POSTGRES system function that returns attributes out
of the current instance. It has three arguments. the argument of type TUPLE passed into
the function, the name of the desired attribute, and a return parameter that describes
whether the attribute is null. Get At t ri but eByNane will align data properly so you
can cast its return value to the desired type. For example, if you have an attribute nane
whichisof thetypechar 16, the Get At t ri but eByNane call would look like:

char *str;

str = (char *) GetAttributeByName(t, “name”, &isnull)

The following query lets POSTGRES know about thec_over pai d function:
CREATE FUNCTION c_overpaid(EMP, int4) RETURNS bool

AS ‘lusr/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE
‘o

While there are ways to construct new instances or modify existing instances from
within a C function, these are far too complex to discuss in this manual.

2.4.2.3 Caveats

This section discusses the more difficult task of writing programming language
functions. Be warned: this section of the manual will not make you a programmer. Y ou
must have a good understanding of C (including the use of pointers and the nal | oc
memory manager) before trying to write C functions for use with POSTGRES.

While it may be possible to load functions written in languages other than C into
POSTGRES, this is often difficult (when it is possible at all) because other languages,
such as FORTRAN and Pascal often do not follow the same calling convention as C.
That is, other languages do not pass argument and return values between functions in
the same way. For this reason, this discussion assumes that your programming language
functions are written in C.

The basic rules for building C functions are as follows:

¢ Most of the header (include) files for POSTGRES should already be ingtalled in
/usr/local/mariposal/include. You should aways include
I /usr/local/mariposal/include on your cc command lines.
Sometimes, you may find that you require header files that are in the server
sourceitself.  In those cases you may need to add one or more of

I /usr/local / postgres95/src/backend

| /usr/1ocal / postgres95/src/backend/incl ude

I /usr/1ocal / postgres95/src/backend/ port/ <PORTNAME>
I /usr/1ocal / postgres95/src/backend/ obj

(where <PORTNAME> is the name of the port, e.g., al pha or sparc) .

¢ When allocating memory, use the POSTGRES routines palloc and pfree instead
of the corresponding C library routines malloc and free. The memory allocated
by palloc will be freed automatically at the end of each transaction, preventing
memory leaks.



Mariposa User Manual v.1.0 27

¢ Always zero the bytes of your structures using memset or bzero. Severa
routines (such as the hash access method, hash join and the sort algorithm)
compute functions of the raw bits contained in your structure. Even if you
initialize al fields of your structure, there may be several bytes of alignment
padding (holes in the structure) that may contain garbage values.

¢ Most of the internal POSTGRES types are declared in postgres.h, soitlly usu
a good idea to include that file as well.

e Compiling and loading your object code so that it can be dynamically loaded
into POSTGRES always requires spédlags. See Appendix A for a detailed
explanation of how to do it for your particular operating system.

2.5 EXTENDING SQL: TYPES

As previously mentioned, there are two kinds of types in POSTGRES: base types
(defined in a programming language) and composite types (instances).

Examples in this section up to interfacing indices can be fousdnmpl ex. sql and
conpl ex. ¢c. Composite examples arefimncs. sql .

2.5.1 Functions Needed for a User-Defined Type

A user-defined type must always have input and output functions. These functions
determine how the type appears in strings (for input by the user and output to the user)
and how the type is organized in memory. The input function takes a null-delimited
character string as its input and returns the internal (in memory) representation of the
type. The output function takes the internal representation of the type and returns a null-
delimited character string.

Suppose you want to defineconpl ex type which represents complex numbers.
Naturally, you can represent a complex in memory as the following C structure:
typedef struct Conplex {
doubl e x;
doubl e v;

} Complex; and a string of the form “(x,y)” as the external
string representation.

These functions are usually not hard to write, especially the output function. However,
there are a number of pointsto remember.

¢ When defining your external (string) representation, remember that you must
eventually write a complete and robust parser for that representation as your
input function!

Complex *
complex_in(char *str)
{
double x, y;
Complex *result;

if (sscanf(str, “ ( %lf , %If )", &%, &y) 1= 2) {
elog(WARN, “complex_in: error in parsing
return NULL;



Mariposa User Manual v.1.0 28

result = (Conplex *)palloc(sizeof (Conplex));
result->x = x;

result->y = vy;

return (result);

}
The output function can simply be:
char *
conpl ex_out ( Conpl ex *conpl ex)
{
char *result;
if (conplex == NULL)
return(NULL) ;
result = (char *) palloc(60);
sprintf(result, “(%g,%g)”, complex->x, complex->y);
return(result);
}

e Try to make the input and output functions inverses of each other. If you do
not, you will have severe problems when you need to dump your datainto afile
and then read it back in (say, into someone else’s database on another
computer). This is a particularly common problem when floating-point
numbers are involved.

To define theconpl ex type, you need to create the two user-defined functions
conpl ex_i nandconpl ex_out before creating the type:

CREATE FUNCTI ON conpl ex_i n( opaque)

RETURNS conpl ex

AS ‘lusr/local/postgres95/tutorial/obj/complex.so’

LANGUAGE ‘c’;

CREATE FUNCTION complex_out(opaque)
RETURNS opaque

AS ‘lusr/local/postgres95/tutorial/obj/complex.so’
LANGUAGE ‘c’;

CREATE TYPE complex (
internallength = 16,

input = complex_in,
output = complex_out

);

As discussed earlier, POSTGRES fully supports arrays of base types. Additionally,
POSTGRES supports arrays of user-defined types as well. When you define a type,
POSTGRES automatically provides support for arrays of that type. For historical
reasons, the array type has the same name as the user-defined type with the underscore
character * ' prepended to it.

Composite types do not need any function defined on them, since the system aready
understands what they look like inside.



Mariposa User Manual v.1.0 29

A Note About Large Objects. The types discussed to this point are all “small”
objects—that is, they are smaller than 8KB size. If you require a larger type for
something like a document retrieval system or for storing bitmaps, you will need to use
the POSTGRES large object interface.

2.6 EXTENDING SQL: OPERATORS

POSTGRES supports left unary, right unary and binary operators. Operators can be
overloaded, or reused, with different numbers and types of arguments. If there is an
ambiguous situation and the system cannot determine the correct operator to use, it will
return an error and you may have to typecast the left and/or right operands to help it
understand which operator you meant to use.

The following example shows how to create an operator for adding two complex
numbers. First you need to create a function to add the new types. Then, you can create
the operator with the function.

CREATE FUNCTI ON conpl ex_add(conpl ex, conpl ex)

RETURNS conpl ex

AS ‘$PWD/obj/complex.so’

LANGUAGE ‘c’;

CREATE OPERATOR + (
leftarg = complex,

rightarg = complex,
procedure = complex_add,
commutator = +

);

To create unary operators, just omit one of | ef t ar g (for left unary) or ri ght ar g (for

right unary) from the binary operator example. Comparison operators, such as ‘<‘, >

and ‘=" are defined the same as other binary operators. The type returned by a
comparison operator must be boolean (TRUE or FALSE). All of RRESTGRES
operators are defined in this way; a function definition and an operator based on the
function. For example, the ‘="' operator is defined ifort 4 using a built-in function

i nt 4eq, forchar 16 usingchar 16eq, for f | oat 8 usingf | oat 8eq, and so on.

If you give the system enough type information, it can automatically figure out which
operators to use.
SELECT (a + b) AS ¢ FROM test_conpl ex;

(o3
(5.2,6.05)
(133. 42, 144. 95)

2.7 EXTENDING SQL: AGGREGATES

Aggregates in POSTGRES are expressed in termitef §ansition functions. That is,
an aggregate can be defined in terms of state that is modified whenever an instance is

58 * 1024 = 8192 bytes. In fact, the type must be considerably smaller than 8192 bytes, since the POSTGRES tuple
and page overhead must also fit into this 8KB limitation. The actual value that fits depends on the machine
architecture.



Mariposa User Manual v.1.0 30

processed. Some state functions look at a particular value in the instance when
computing the new state (sfuncl in the create aggregate syntax) while others only keep
track of their own internal state (sfunc2).

If you define an aggregate that uses only sf uncl, you are defining an aggregate that
computes a running function of the attribute values from each instance. “Sum” is an
example of this kind of aggregate. “Sum” starts at zero and always adds the current
instance’s value to its running total. The following example uses the&pl that is

built into POSTGRES to perform this addition.

CREATE AGCREGATE conpl ex_sum (
sfuncl = conpl ex_add,

basetype = conpl ex,

stypel = conpl ex,

initcondl = ‘(0,0)’

)

SELECT complex_sum(a) FROM test_complex;

complex_sum
(34,53.9)

If you define only sf unc2, you are specifying an aggregate that computes a running
function that is independent of the attribute values from each instance. “Count” is the
most common example of this kind of aggregate. “Count” starts at zero and adds one to
its running total for each instance, ignoring the instance value. Here, you can use the
built-in i nt 4i nc routine to do the work for you. This routine increments (adds one to)
its argument.

CREATE AGCGREGATE mny_count (sfunc2 = int4inc, -- add one
basetype = int4, stype2 = int4,
initcond2 = ‘0");

SELECT my_count(*) as emp_count from EMP;

emp_count
5

“Average” is an example of an aggregate that requires both a function to compute the
running sum and a function to compute the running count. When all of the instances
have been processed, the final answer for the aggregate is the running sum divided by
the running count. You can use thet 4pl andint4inc routines you used
previously as well as the POSTGRES integer division routineddi v, to compute
the division of the sum by the count.

CREATE AGCREGATE my_average (sfuncl = int4pl, -- sum

basetype = int4,

stypel = int4,

sfunc2 = int4inc, -- count
stype2 = int4,

finalfunc = int4div, -- division
initcondl = ‘0’,

initcond2 = ‘0");

SELECT my_average(salary) as emp_average FROM EMP;



Mariposa User Manual v.1.0 31

enp_aver age
1640

2.8 INTERFACING EXTENSIONS TO INDICES

The procedures described to this point enable you to define a new type, new functions,
and new operators. However, you have not yet seen how to define a secondary index
(such as a B-tree, R-tree or hash access method) over a new type or its operators.

Look back at Figure 2. The right half shows the catalogs that you must modify in order
to tell POSTGRES how to use a user-defined type and/or user-defined operators with an
index (i.e, pg_am pg_anop, pg_anmproc and pg_opcl ass).
Unfortunately, there is no simple command to do this. This section demonstrates how to
modify these catalogs through a running example: a new operator class for the B-tree
access method that sorts integers in ascending absolute value order.

The pg_amclass contains one instance for every user- defined access method. Support
for the heap access method is built into POSTGRES, but every other access method is
described here. The schemais described in Table 4.

amname name of the access method

amowner object id of the owner’s instance in pg_user

amkind not used at present, but set to ‘0’ as a plage
holder

amstrategies number of strategies for this access method
(see below)

amsupport number of support routines for this access

method (see below)

amgettuple, aminsert, ... procedure identifiers for interface routines|to
the access method. For examplegpr oc
IDs for opening, closing, and getting
instances from the access method appear
here.

Table 4: pg_am schema

The object ID of the instance pg_amis used as a foreign key in lots of other classes.
You don't need to add a new instance to this class; all you're interested in is the object
ID of the access method instance you want to extend:

SELECT oid FROM pg_am WHERE amname = ‘btree’

oid
403

The anstrategi es attribute standardizes comparisons across data types. For
example, B-trees impose a dtrict ordering on keys, lesser to greater. Because
POSTGRES allows the user to define operators, POSTGRES cannot look at the name of



Mariposa User Manual v.1.0 32

an operator (e.g., > or <) and tell what kind of comparison it is. In fact, some access
methods don’t impose any ordering at all. For example, R-trees express a rectangle-
containment relationship, whereas a hashed data structure expresses only bitwise
similarity based on the value of a hash funct®STGRES needs some consistent way

of taking a qualification in your query, looking at the operator, and then deciding if a
usable index exists. This implies that POSTGRES needs to know, for example, that the
<= and > operators partition a B-tre®@OSTGRES uses strategies to express these
relationships between operators and the way they can be used to scan indices.

Defining a new set of strategies is beyond the scope of this discussion, but we'll explain
how B-tree strategies work because you’'ll need to know that to add a new operator class.
In thepg_amclass, theanst r at egi es attribute is the number of strategies defined

for this access method. For B-trees, this number is 5. These strategies correspond to

| ess than

| ess than or equal
equal

greater than or equal
greater than

Gl WIN|F-

The idea is that you'll need to add procedures corresponding to the comparisons above
to thepg_anop relation (see below). Theceess method code can use these strategy
numbers, regardless of data type, to figure out how to partition the B-tree, compute
selectivity, and so on. Don’t worry about the details of adding procedures yet; just
understand that there must be a set of these proceduiiestfdr i nt 4, oid, and

every other data type on which a B-tree can operate.

Sometimes, strategies aren’t enough information for the system to figure out how to use
an index. Some access methods require other support routines in order to work. For
example, the B-tree access method must be able to compare two keys and determine
whether one is greater than, equal to, or less than the other. Similarly, the &t®® a
method must be able to compute intersections, unions, and sizes of rectangles. These
operations do not correspond to user qualifications in SQL queries; they are
administrative routines used internally by the access methods.

In order to manage diverse support routines consistently acrdBOS8TGRES access
methodspg_amincludes an attribute callethsupport. This attribute records the
number of support routines used by aoess method. For B-trees, this number is one—
the routine to take two keys and return -1, 0, or +1, depending on whether the first key
is less than, equal to, or greater than the seond.

Theanstrat egi es entry inpg_amis just the number of strategies defined for the
access method in question. The procedures for less than, less equal, and so on don't
appear inpg_am  Similarly, amsupport is just the number of support routines
required by the access method. The actual routines are listed elsewhere.

The next class of interest ig)_opcl ass. This class exists only to associate a name
with an OID  In pg_anop, every B-tree operator class has a set of procedures, one
through five, above. Some existing opclassesiare2_ops, int4 _ops, and

oid ops. You need to add an instance with your opclass name (for example,
conpl ex_abs_ops) topg_opcl ass. The OID of this instance is a foreign key in
other classes.

6 Strictly speaking, this routine can return a negative number or a non-zero positive number.



Mariposa User Manual v.1.0 33

INSERT INTO pg_opclass (opcname) VALUES (‘complex_abs_ops’);

SELECT oid, opchame
FROM pg_opclass
WHERE opchame = ‘complex_abs_ops’;

oid opchame
17314 complex_abs_ops

Note that the OID for your pg_opcl ass instance will be different! You should
substitute your value for 17314 wherever it appearsin this discussion.

So now you have an access method and an operator class. But you still need a set of
operators, the procedure for defining operators was discussed earlier in this manual. For
the conpl ex_abs_ops operator class on B-trees, the required operators are;

¢ absolute value

less-than absolute value

¢ less-than-or-equal absolute value

e equal absolute value

e greater-than-or-equal absolute value

e greater-than

Suppose the code that implements the functions defined is stored in the file
lusr/local/mariposa/src/tutorial/complex.c

Part of the code look like this: (note that you will only show the equality operator for the
rest of the examples. The other four operators are very similar. Refer to conpl ex. ¢
or conpl ex. sql for the details.)

#define Mag(c) (c->x*c->x + c->y*c->Y)

bool

complex_abs_eq(Complex *a, Complex *b)

{

double amag = Mag(a), bmag = Mag(b);

return (amag==bmag);

}

There are a couple of important things that are happening below.

First, note that operators for less-than, less-than-or-equal, equal, greater-than-or-equal,

and greater-than for i nt 4 are being defined. All of these operators are already defined

for i nt 4 under thenames<, <=, =, >=,  and>. The new operators behave
differently, of course. In order to guarantee that POSTGRES uses these new operators

rather than the old ones, they need to be named differently from the old ones. Thisis a

key point: you can overload operators in POSTGRES, but only if the operator isn’t
already defined for the argument types. That is, if you hawdefined fori nt 4,
(int4), you can't define it again. POSTGRES does not check this when you define
your operator, so be careful. To avoid this problem, odd names will be used for the
operators. If you get this wrong, the access methods are likely to crash when you try to
do scans.



Mariposa User Manual v.1.0 34

The other important point is that all the operator functions return Boolean values. The
access methods rely on this fact. (On the other hand, the support function returns
whatever the particular access method expects—in this case, a signed integer.)

The final routine in the file is the “support routine” mentioned when you discussed the
ansupport attribute of thgpg_amclass. You will use this later on. For now, ignore it.
CREATE FUNCTI ON conpl ex_abs_eq(conpl ex, conpl ex)
RETURNS bool
AS ‘lust/local/mariposa/tutorial/obj/complex.so’
LANGUAGE ‘c’;

Now define the operators that use them. As noted, the operator hames must be unique
among all operators that take two i nt 4 operands. In order to see if the operator names
listed below are taken, you can do aquery on pg_oper at or :

/*

* this query uses the regular expression operator (~)

* to find three-character operator names that end in

* the character &

*/

SELECT *

FROM pg_operator

WHERE oprname ~ ‘*..&$"::text;

to see if your name is taken for the types you want. The important things here are the
procedure (which are the C functions defined above) and the restriction and join
selectivity functions. You should use just the ones used below—note that there are
different functions for the less-than, equal, and greater-than cases. These must be
supplied, or the access method will crash when it tries to use the operator. You should
copy the names farest ri ct andj oi n, but use the procedure names you defined
in the last step.

CREATE OPERATOR = (

leftarg = conpl ex,

rightarg = conpl ex,

procedure = conpl ex_abs_eq,

restrict = eqgsel,

join = eqjoi nsel

)

Notice that five operators corresponding to less, less equal, equal, greater, and greater
equal are defined.

The final step is to update thpg_anop relation. To do this, you need the following
attributes:

anopi d the OD of the pg_am instance for B-tree
== 403, see above)

anopcl ai d the OD of the pg_opclass instance for
int4_abs_ops (== whatever you got instead
of 17314, see above)

anopopr the oids of the operators for the opclass
(which we'll get in just a minute)

anopsel ect, | cost functions

anopnpages

The cost functions are used by the query optimizer to decide whether or not to use a
given index in a scan. Fortunately, these already exist—bt r eesel , which estimates



Mariposa User Manual v.1.0 35

the sdlectivity of the B-tree, and bt r eenpage, which estimates the number of pages a
search will touch in the tree.

You need the OIDS of the operators you just defined. To find them, look up the names
of al the operatorsthat taketwo i nt 4s, and pick yours out:

SELECT o0.0id AS opoid, o.oprnane

I NTO TABLE conpl ex_ops_tnp

FROM pg_operator o, pg_type t

WHERE o.oprleft = t.oid and o.oprright = t.oid

and t.typname = ‘complex’;

which returns:

oid oprname
17321 <

17322 <=
17323 =

17324 >=
17325 >

(Again, some of your OID numberswill almost certainly be different.) In this example,
the operators you are interested in are those with OIDS 17321 through 17325. (The
values you actually get will probably be different, and you should substitute them for the
values below.) Look at the operator names and pick out the ones you just added.

Now you're ready to updatpg_anop with our new operator class. The operators
should be ordered, from less than through greater thany_ianmop. Add the required
instances:

| NSERT I NTO pg_anop (anopi d, anopcl ai d, anopopr,
anopstr at egy,

anopsel ect, anopnpages)

SELECT am oi d, opcl.oid, c.opoid, 3,
‘btreesel’::regproc, ‘btreenpage’::regproc

FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = ‘btree’ and opcname = ‘complex_abs_ops’
and c.oprname = ‘=,

Note the order: “less than” is 1, “less than or equal” is 2, “equal” is 3, “greater than or
equal” is 4, and “greater than” is 5.

The last step is registration of the support routine previously described in our discussion
of pg_am The OID of this support routine is stored in figg_anpr oc class, keyed
by the access methad d and the operator class d.  First, you need to register the
function in POSTGRES (ratl that you put the C code that implements this routine in
the bottom of the file where you implemented the operator routines):

CREATE FUNCTION i nt4_abs_cnp(int4, int4)

RETURNS i nt 4

AS ‘lust/local/postgres95/tutorial/obj/complex.so’

LANGUAGE ‘c’;

SELECT oid, proname FROM pg_proc WHERE prname =
‘int4_abs_cmp’;

oid proname
17328 intd_abs_cmp




Mariposa User Manual v.1.0 36

(Again, your OID number will probably be different and you should substitute the value
you see for the value below.) Recalling that the B-tree instance’s OID is 403 and that of
i nt4_abs_opsis 17314, you can add the new instance as follows:
I NSERT | NTO pg_anproc (am d, anopclaid, anproc, anprocnhum
VALUES (‘403'::0id, -- btree oid
‘17314"::0id, -- pg_opclass tuple
17328’::0id, -- new pg_proc oid
1'::int2);

2.9 THE POSTGRES RULE SYSTEM

Production rule systems are conceptually simple, but there are many subtle points
involved in actually using them. Consequently, this guide does explain the actual syntax
and operation of the POSTGRES rule system here. Instead, you should read [ STON9O0b]
to understand some of these points and the theoretical foundations of the POSTGRES
rule system before trying to use rules. The discussion in this section is intended to
provide an overview of the POSTGRES rule system and point you to helpful references
and examples.

The “query rewrite” rule system modifies queries to take rules into consideration, and
then passes the modified query to the query optimizer for execution. It is very powerful,
and can be used for many things such as query language procedures, views, and
versions. The power of this rule system is discussed in [ONG90] as well as [STON90b].



Mariposa User Manual v.1.0 37

3. MARIPOSA

This section introduces the Mariposa architecture in more detail and extends the
examples from Section 2.1 to include distribution. We show how to split a Mariposa
classinto fragments and how to move data manually from one site to another. We show
how Mariposa processes queries over remote data using information from the name
server.

3.1 Mariposa Modules

Mariposa consists of the following cooperating processes:
1. A singlesite manager daemon, which supervises the backends

2. Oneor more backend database server processes

3. A client frontend process.

Users who are familiar with POSTGRES will recognize similarities between the site
manager and backend processes and the postmaster and postgres processes on which
they were based.

Referring back to Section 1.3 we briefly summarize the example illustrated in Figure 1.

The client program issues queries to the Mariposa system. Queries are expressed in a
version of Standard Query Language. See Section 2.1 for a description of SQL used

with POSTGRES, the single-site database supplied with Mariposa. The query is passed

into an available backend by the site manager. Inside the backend, the query is passed
through a parser and then through an optimizer, which creates a query plan. The

guery plan describes what operations will be performed to process the query, and in

what order. The optimizer used in Mariposa is a single-site optimizer. It produces a

plan asif all the data resided at a single site. The single-site plan is then passed to the
backend’'sfragmenter module. The fragmenter produces a fragmented query plan
which reflects the fragmentation of the tables referenced in the query and is
“parallelizable” to a greater or lesser degree. The fragmenter is described in Section
3.3. The parser, optimizer and fragmenter use information fnroama server module,
running at the same or a different site.

The fragmenter passes the fragmented plan to the backpredisbroker. The query
broker is explained in detail in Sectiderror! Reference source not found.. A
Mariposa user allocatesbaidget to each query. The goal of the query broker is to select
sites to process the query within the allotted budget. The query broker decides which
Mariposa site will process each node in the query plan by following one of two
protocols:

¢ In the long protocol, the query broker contacts the site managbitder
module at each potential processing site. The broker waits for responses from
the bidders before selecting the best ones.



Mariposa User Manual v.1.0 38

¢ In the short protocol, the query broker uses information collected from the
name server to select the processing sites, thereby avoiding the cost of
contacting many remote sites.

After the query broker has specified the processing sites, the baclkeodidnator
module takes over, notifying the remote sites to begin processing, collecting the results,
and returning the answer to the client program.

Each Mariposa server site containbidder module, which is part of the site manager
process. The bidder, explained in SectBrror! Reference source not found.,
responds to requests for bids from the query broker. When a bidder receives a request to
bid on part of a query, it may either refuse to bid, or return a bid to the query broker.
The bid includes the price to perform the work, and a time bound within which the work
must be completed. If a bidder bids, then it must process the query if it is chosen by the
guery broker to do so.

Winning bids must sooner or later be processed. To execute these queries, the site
manager allocates an idle backend to it. The number of backends controls the
multiprocessing level at each site, and may be adjusted as conditions warrant. The local
backend sends the results of the subquery to the site executing the next part of the query
or back to the coordinator process.

Each Mariposa server site also includeslada broker. The data broker was not
mentioned in the example in Section 1.3. The data broker is called after each query is
run, whether the query originated at a remote site or locally. Based oncdats a
patterns and space considerations, it engages in buying and selling fragments with data
brokers at other Mariposa sites. See Section 3.5.

The behavior of the bidder and data broker processes are controlled through use of the
Tcl scripting language. Using Tcl, it is straightforward to change policy decisions; one
simply modifies the rules and scripts by which these modules are implemented.

Note: We have not included an explanation of Tcl. Readers unfamiliar with Tcl can
refer to one of the books on the subject (suchAradntroduction to the Tcl and Tk
Toolkit by John Ousterhout, Addison-Wesley 1994) or to dwep. | ang. tcl
USENET newsgroup.

3.2 A Distributed Example

The source for all of the examples in this section can be found in
‘src/tutorial/dist.sql’ . This section assumes that you have ingalled
Mariposa on at least two sites. For instructions on setting up Mariposa, refer to the
Installation and Setup Guide. In this section:

¢ We assume that you have a site manager process running at the two sites
referred to as numbers 1 and 2 in the examples.

e Weassume that Site 1 is a name server and has subscribed to the metadata for
Site 2 using the SUBSCRIBE METADATA command. See Section 3.4 and the
Installation and Setup Guide.

¢ In the example, data is moved from one site to another and then queried
immediately, so the update interval for the SUBSCRIBE METADATA



Mariposa User Manual v.1.0 39

statement should be relatively short, for example 60 seconds. See Section 3.4.1
for an explanation of SUBSCRIBE METADATA.

¢ Sitelisthe home site, where we are issuing queries. Site 2 isaremote site, in
this case, Miami.

3.2.1 Creating a Mariposa Class

In Mariposa, classes are created at a Site just as in a single-site database. However, the
CREATE TABLE command in Mariposa has been extended. In Mariposa, a user can
specify how the table is to be partitioned, should the table ever be split into fragments.
Note that when a table is split, it is always split into two fragments. Each of the
resulting fragments can be split again, and so on. There are four ways to partition a
tablein Mariposa, shownin Table5.

Partition Expl anati on
Mbde
Random Records are placed in one fragnent or the other at
random

Round- Robin | Half the records are placed in one fragment, half
in the other.

Key- Based The records are partitioned by value based on one
of the attributes of the class and a split val ue,
supplied by the user.

Hash- Based | The records are partitioned by the conparing the
result of a function over one of the attributes to
a value. The function, the attribute and the split
val ue are all supplied by the user.

Table 5: Mariposa Partitioning Strategies

The SQL CREATE TABLE statement has been extended in Mariposa to include a
PARTITION clause. The syntax for the PARTITION clause for the four partitioning
modesisin Table 6.

Partition PARTI TI ON C ause Synt ax
Mbde
Random RANDCOM
Round- Robi n RONDROBI N
Key- Based PARTI TI ON ON <attribute> USING < function>
Hash- Based PARTI TION ON < function> ( <attribute>)

Table 6: PARTITION Clause Syntax

The syntax for key-based and hash-based partitioning requires some explanation. The
<attribute> is one of the columnsin the table. <function> is a function that takes two
arguments and returns -1, 0 or +1 depending on whether the first argument is less than,
equal to, or greater than the second. In general, the comparison function is an access
method comparison function, as described in Section 2.8. All the tuples in which
<attribute> islessthan or equal to the split value go in thefirst fragment. All tuplesin
which <attribute> is greater than the split value go in the second fragment.



Mariposa User Manual v.1.0 40

The widgets in the example in Section 2.1.1 were kept in two warehouses. Miami and
New York. We will keep the records for widgets in the location where they are stored,
so we will split using key-based partitioning on the LOCATION attribute. We create
the WIDGETS class with the following SQL statement:
CREATE TABLE W DGETS (
PART_NO int4,

LOCATI ON char 16, -- warehouse: M am or New York
ON_HAND int4, -- quantity on-hand
ON_ORDER i nt 4, -- quantity on order
COW TTED i nt 4 -- quantity sold but not shipped

) PARTI TI ON ON LOCATI ON USI NG bt char 16cnp;

The function bt char 16cnp takes two arguments of type charl6 and returns -1, O or
+1, as described above. In general, for key- and hash-based partitioning, the b-tree
comparison functions work. They are named analogoudly to bt char 16cnp: substitute
the appropriate type in place of char 16.

3.2.2 Splitting a Classinto Fragments

Now that we have created the WIDGETS class with the proper partitioning mode, the
class can be populated just asin Section 2.1.2 with the INSERT statement:

I NSERT | NTO W DCETS

VALUES (1, ‘New York’, 500, 1500, 300);

Or with the COPY command:
COPY WIDGETS FROM ‘src/tutorial/widgets.txt’;

Now we can split the table into two fragments using the SPLIT FRAGMENT statement:
SPLIT FRAGMENT WIDGETS
INTO WIDGETS_MI, WIDGETS_NY
AT ‘Miami’;

The SPLIT FRAGMENT statement creates two new relations which together make up
the original relation. Using key-based partitioning, all the tuples in which LOCATION
<= ‘Miami’ go in WIDGETS_MI. All the tuples in which LOCATION > ‘Miami’ go in
WIDGETS_NY. This effectively splits the tuples so that the Miami tuples go in
WIDGETS_MI and the New York tuples go in WIDGETS_NY. The original relation
can be queried like before:

SELECT * FROM W DCETS;



Mariposa User Manual v.1.0

PART_NO | LOCATI ON ON_HAND | ON_ORDER | COW TTED

1 New Yor k 500 1500 300

2 New Yor k 3000 0 1000

3 M ani 10000 5000 8000

4 M ani 8500 0 200

5 New Yor k 2500 2000 2000

3 New Yor k 1800 200 750

2 M ani 9300 700 5000

4 New Yor k 3200 0 0

6 New Yor k 1800 5000 1500

6 M ani 11000 0 3000

Each fragment can also be queried individually:

SELECT * FROM W DGETS_M ;

PART_NO | LOCATI ON ON_HAND | ON_ORDER | COW TTED

3 M ani 10000 5000 8000

4 M ani 8500 0 200

2 M ani 9300 700 5000

6 M ani 11000 0 3000
SELECT * FROM W DCGETS_NY;

PART_NO | LOCATI ON ON_HAND | ON_ORDER | COW TTED

1 New Yor k 500 1500 300

2 New Yor k 3000 0 1000

5 New Yor k 2500 2000 2000

3 New Yor k 1800 200 750

4 New Yor k 3200 0 0

6 New Yor k 1800 5000 1500

41

Alternatively, to create the two fragments WIDGETS MI and WIDGETS NY and
popul ate them with the appropriate tuples, we could have created the WIDGETS table
and split it without populating it first. Then we could have inserted tuples into the
fragments, putting the New York tuples in WIDGETS NY and the Miami tuples in
WIDGETS MI.

3.2.3 Moving Fragments

Now, suppose we want to move the WIDGETS MI fragment to Miami. Say the
Mariposa server running in Miami has a hostid of 2. (For an explanation of hostid’s,
see thdngtallation and Setup Guide). We use the MOVE FRAGMENT oamand to
move WIDGETS_MI to hostid 2:

MOVE FRAGVENT W DGETS M to 2;

After the fragment has been moved, we can still query the WIDGETS class, as before:
SELECT * FROM W DCETS;



Mariposa User Manual v.1.0 42

PART_NO | LOCATI ON ON_HAND | ON_ORDER | COW TTED
1 New Yor k 500 1500 300
2 New Yor k 3000 0 1000
3 M armi 10000 5000 8000
4 M armi 8500 0 200
5 New Yor k 2500 2000 2000
3 New Yor k 1800 200 750
2 M armi 9300 700 5000
4 New Yor k 3200 0 0

6 New Yor k 1800 5000 1500
6 M armi 11000 0 3000

If the query SELECT * FROM WIDGETS only retrieves the New Y ork tuples, the name

server (in this case, Site 1) hasn't received the ratdafdom Site 2. If you have set up

Site 1 as the name server, as indicated at the beginning of this section, wait until the
update interval has passed and issue the query again.

3.2.4 Copying a Fragment

Now, suppose that we want to make a read-only copy of the WIDGETS_MI fragment so
that we can query it without the latency of network traffic. We can make a read-only
copy by issuing the COPY FRAGMENT command:

COPY FRAGVENT READONLY W DGETS_M

FROM 2 UPDATE EVERY 3600;

This command causes a read-only copy of WIDGETS_MI to be brought from Site 2 to

Site 1 (the home site). Furthermore, updates from Site 2 will be brought over and
applied every hour (3600 seconds). This means that the copy of WIDGETS_MI at Site 1
is up to an hour out of date. If Site 2 generated writes frequently and users at Site 1
required more accurate information a smaller update interval might have been

appropriate.

The next two sections describe the Mariposa replica system and name service in more
detail. Section 3.5 describes the Mariposa Data Broker. Section 0 explains distributed
guery processing in Mariposa in more detail.

3.3 THE MARIPOSA REPLICA SYSTEM

Mariposa permits the replication of data fragments. In the current implementation, a
replica is created from one other replica, which we will refer to gmitt. Replicas
created from a parent are calleddtsldren. Each replica periodicallyeceivesupdates

from its parent. This allows Mariposa to use one replica in the place of another,
improving availability during host crashes and network failures, and improving
performance.

There are two types of Mariposa replicastead-only replica receivesall updates from

its parent but cannot process updatesg#d-write replica propagates its updates to its
children, as well as receivingpdates from its parent, if it has one. We use the term
update to mean any tuple insertion, deletion, or modification.



Mariposa User Manual v.1.0 43

Updates are sent from a parent to a child in an update stream. Update streams are
initiated by the site manager of the parent site at regular intervals. The update interval is
specified at thetime acopy is created.

There are two update streams for read-write replicas. one from parent to child, and one
from child to parent. Read-only replicas only receive update streams from their parents.

3.3.1 Creating a Copy

To create a copy of a fragment in the Mariposa system, use the COPY FRAGMENT
command at the site requesting a copy (the child site). The site that owns the copy will
be referred to as the parent site. The COPY FRAGMENT command causes a request to
be sent to the parent site to send a copy. When the request has been processed, the child
site owns a fragment whose contents are the same as the parent as of the time of
transfer. A copy contract is set up at each site, which will cause update streams to be
sent back and forth.

The name of a copy is generated automatically by Mariposa. The hexadecimal value of
the fragment storage id of the copy, which uniquely identifies it, is appended to the first
eight characters of the name of the parent fragment. For example, if a copy of the
fragment W DGET_M were made the name of the copy would be something like
W DGET_M)A3FBC23.

The syntax for the COPY FRAGMVENT command is:
COPY FRAGMVENT [ READONLY] fragnent _nane
FROM hosti d
UPDATE EVERY period

fragment_name is the name of the fragment at the parent site. The parent site’s hostid
is hosti d. period is the amount of time, in seconds, that passes between update
stream sendoffs. If tHREADONLY option is specified then a read-only copy is made.

3.3.2 Dropping a Copy

Dropping a copy in Mariposa removes the contents of the copy from the database and
cancels the update contract with the parent Bibée: The system will not warn you if
you try to drop the last copy of a fragment.

The syntax for the drop copy command is:
DROP COPY fragnane

wher e fragnane is the name of the copy.

3.3.3 Moving a Copy

Since copies are fragments with associated update stream contractsovbe
FRAGVENT command is used to move copies as well as fragments. In the case of copies,
the system takes care of renogotiating the update stream contracts between the other
copy holders and the new copy holder. See Section 3.2.3 for information on moving
fragments.

3.4 MARIPOSA NAME SERVICE

The purpose of hame service is to supply client sites with eébessary information to
run queries on remote data. In order to process a query on remote data, Mariposa needs
the queried tables’ metadata at various stages:



Mariposa User Manual v.1.0 44

¢ During parsing, the syntactic correctness of the query statement has to be
verified. This requires information about the queried tables’ attributes and their
types, about operators used in the query etc.

¢ The fragmenter needs information about the fragmentation of remote tables.

e The query broker needs to know the location of the remote fragements.

For local tables, this information is stored in the site’s local database catalogs. For
remote tables, a hame server provides the information stored in the remote database
catalogs to its clients by replicating the remote catalogs. This replication is achieved by
using the copy mechanism described in Section 3.3.

A Mariposa name server is a regular Mariposa site, which keeps read-only copies of a
subset of the system catalogs of other sites. These copies are maintained by the update
streams sent from the source sites to the name server; as a consequence, information
obtained from a name server will always be out-of-date by a certain amount, just like
copies of regular data. The set of sites whose system tables are on a name server is not
fixed and does not have to include every existing site. The DBA of a site autonomously
determines if that site should also provide name service and which remote sites’ catalogs
it should replicate.

One difference between catalog data and regular user data replication is that the name
server site does not keep the catalog tables from each of the remote sites separated in its
own local tables. Instead, the data of all the remote sites’ tables is merged into a single
set of name server catalog tables. In the current version of Mariposa, only the data from
the catalog tables pg_class, pg_fragment and pg_attribute are replicated; they are stored
in the name server catalog tables pg_nsvcclass, pg_nsvcfrag and pg_nsvcattr.

3.4.1 Setting Up Name Service

Every Mariposa site can be set up to be a Mariposa name server, because every site has
the basic infrastructure needed to provide name service: the replication protocol and the
name server catalog tables. In order to fill the name server tables, the database
administrator has to establish copy contracts with those sites whose system catalogs it
wants to replicate. We call these sitesdbarce sites. The command

SUBSCRI BE METADATA host | D updat e-i nt er val

sets up a read-only copy contract with the source site indicatbdsthip. The data of

the relevant system catalogs is sent from the source to the name server site and is
merged into the name server catalog tables. The source site periodically sends an update
stream to the name server site, which is also applied to the name server catalog tables.

A variation of the SUBSCRIBE MEADATA command is the SUBSCRIBE
NAMESERVICE command:
SUBSCRI BE NAMESERVI CE host | D updat e-i nt er val

The SUBSCRIBE METADATA coimand allows a name server to acquire the data

from the source site’s hame server catalog tables. This reduces the overhead of running
name service, because a hame server can reuse the data acquired by other name servers.
It would be possible to create a system with one of the name servers having a contract
with every existing client site and all the other name servers simply replicating that
name server’'s data.



Mariposa User Manual v.1.0 45

To stop serving the meta data from a particular site, use the UNSUBSCRIBE
METADATA command:
UNSUBSCRI BE METADATA host | D

This cancels the copy contract with the source site and removes its meta data from the
name server’'s catalog tables. Similarly, to cancel a SUBSCRIBFIESERVICE
command, use UNSUBSCRIBE NAMSERVICE.

3.4.2 Specifying A Primary Name Server

Every site needs to have access to a name server in order to process queries on remote
tables. The primary name server of a site is specified with the command
set naneserver hostlD

This site will cause Mariposa to contact the name server indicatédstip for all

name service information. If a site is itself a name server, it could simply supply its own
host ID. Note that even if a site is a name server, it may use a remote site for its own
name service.

3.5 THE MARIPOSA DATA BROKER

The Mariposa data broker performs data placement, moving and copying fragments, in
response to access patterns. The data broker is a Tcl script, which means that it is easily
modified by Mariposa users. When the site manager process is started, it looks in the
directory $PGDATA/files for a file @lled databroker.tcl. This file must contain a
procedure called DataBroker, written in Tcl, whiatcepts no arguments and has no
return value.

The DataBroker procedure is called each time a query is finished running. The query
may have originated locally, or it may be part of a remote query being run on behalf of
another site. The site manager defines a few global Tcl variables that the data broker
can use to make decisions about moving data around. One variable ishoaltedd
and identifies the local hostid. This is necessary for the data broker to examine whether
data is stored locally or remotely. The other Tcl variable made available to the data
broker is called r agnent s. Itis a Tcl list which describes all of the data fragments
accessed in the query that just’rarThere is one entry in the list for each class accessed
in the query. Each entry is of the form:

{classid logicalid storeid pages tuples {loci locz... locn} }

The items are explained in Table 7.

" The list will contain information about all fragments of all classes accessed in the query, whether the query
originated locally or not. This gives data brokers running at all sites access to information about which fragments
are being used most often.



Mariposa User Manual v.1.0 46

Item Description

classid The OID (Object Identifier) of the fragment's class. Shared by all
copies of all fragments of a class.

logicalid The OID shared by all copies of the fragment.

storeid The OID of the fragment at the site where it waessed for the
current query. Unique to this copy of the fragment.

pages The size of the fragment, in disk pages.

tuples The size of the fragment, in tuples.

loc; loc,... log, | The hostid’s of the storage locations of all copies of the fragment.
| ocl is the hostid of the location where the fragment waessed
for the current query.

Table 7: Fragment Information for Data Broker

The data broker may use the information in any way it wants. Here is a small data
broker that buys fragments it doesn’t already have the second time they're accessed.

HHEH I R
# dat abroker.tcl --
HHEH R R

set fragnmentsAccessed ""
proc Dat aBroker {} {
gl obal fragnents

gl obal hostid

gl obal fragnment sAccessed

CGo through each fragnment in the list of fragnents
accessed. |f a fragnment has been accessed twice
then buy it.

Use the fragnment’s logicalid to keep track of which
fragnents have been accessed. Logicalid s are unique
across sites but are the sane for copies of the same
fragment.

foreach fragnent $fragnents {

set fraStorageSites [lindex $fragnment 5]

#
#
#
#
#
#
#
#

# If we don't already have a copy of the fragment at
# this site
if {[Isearch $fraStorageSites $hostid] == -1} {
set fralogicalid [lindex $fragment 1]
set listPos [Isearch $fragmentsAccessed $fralogicalid]

# If we've already seen this fragment before, remove it
# from the list of fragments accessed and bring it to
# this site using takefragment. Otherwise, record it.



Mariposa User Manual v.1.0 47

if {$listPos > -1} {
set fragmentsAccessed [|repl ace $fragnentsAccessed
$li st Pos $listPos]
set fraclassid [lindex $fragnent 0]
set frastoreid [lindex $fragnent 2]
set frahostid [lindex $fraStorageSites 0]
takefragment $fracl assid $frastoreid $frahostid
} else {
| append fragment sAccessed $fral ogicalid

}

We have added two Tcl commands for the data broker: t akefragnent and
novef ragment. The syntax for these commandsis:

t akefragnent <cl assi d> <storei d> <fromhosti d>

nmovef ragment <cl assi d> <storei d> <tohostid>

As the names suggest, t akef ragnent takes a fragment from the remote host
indicated by <fronmhosti d> and installs it locally. mnovefragment moves a
fragment to the remote host <tohostid>.

3.6 QUERY PROCESSING IN MARIPOSA

As described in Section 1.3, when a user submits a query to Mariposa, it passes through
several modules including a parser, optimizer, fragmenter and so on. The behavior of
some of these modules can be affected by the user to a greater or lesser extent either by
using special Mariposa commands or, in the case of the bidder, by providing the Tcl
script that defines its behavior. This section describes these modules and how a
Mariposa user can change their behavior and thus the behavior of the system.

3.6.1 The Fragmenter

After the Mariposa system accepts a query from a client process, parses it and performs
optimization, the system hands the query, in the form of a query plan, to the fragmenter.
The Mariposa fragmenter module takes a plan that only references whole classes and
produces a plan that reflects the underlying fragmentation of the tables.

In this section, we describe how different fragmented plans can be produced from one
single-site plan, and how to control the fragmentation process.

3.6.1.1 Fragmented Query Plans

After the fragmenter accepts a query plan from the single-site optimizer, it descends to
the leaves of the plan tree, which represent scans over base relations. For example, the
query

SELECT * from EMP, DEPT where EMP. dept no = DEPT. no;

may be converted into the plan tree shown below in Figure 3 by the single-site optimizer
before fragmentation. The base relations are unindexed, so a sequential scan (SS) is
used. The data from each sequential scan is sorted by department number into a
temporary relation, which is scanned before performing the join.



Mariposa User Manual v.1.0 48

JON
|
SS( TEMP1) SS( TEMP2)
sk sk
SS(EMP) SS(DEPT)

Figure 3: Unfragmented Query Plan

Asexplained in Section 3.2.2, base relations in Mariposa can be partitioned horizontally
into data fragments. Each data fragment contains some fraction of the tuplesin the base
relation. Together, the data fragments represent the entire base relation. Each of the
scansin the plan tree is divided into one or more scans, one for each data fragment.

In our example the EMP relation is fragmented into EMP1 EMP2 and EMP3.
Similarly, the DEPT relation is fragmented into DEPT1 and DEPT2. The fragmenter
starts by dividing the sequential scan of EMP into sequential scans of EMP1, EMP2 and
EMP3, and similarly for DEPT. Each of these sequential scans produces a tuple stream.
Tuple streams in Mariposa are merged together into a single stream by inserting a
merge node above them in the plan tree. The merge node takes multiple tuple streams
asinput and produces one stream as outpuit.

The fragmenter can produce different plans from one unfragmented plan by inserting
merge nodes at different placesin the plan tree. In our example, any of the fragmented
plans shown below in Figure 4 could be produced by the fragmenter. In Fragmented
Plan A, the fragmenter has placed merge nodes directly above the fragmented sequential
scans.  In Fragmented Plan B, the sequential scans are first sorted, then merged
together. Since the join in our example requires the input streams to be sorted, the
merge nodes must maintain the sorted order, and so are merge-sort nodes in this plan.
In Fragmented Plan C, each pair of data fragments is scanned, sorted and joined
together, and the resulting streams are merged together.

The placement of merge nodes affects the number of nodes in the fragmented plan and
thereby affects the potential for parallel execution of the plan. In Figure 4, Plan A has
fewer nodes than Plan B, which has fewer than Plan C. Each of the nodes in Plan A
represents more work than each of the nodes in Plan B, with the exception of the
sequential scans. Likewise, the nodes in Plan B represent more work, on average, than
thosein Plan C. If the work is divided between multiple servers, Plan C can achieve a
higher degree of parallelism than Plan B, and similarly for Plan B and Plan A.



Mariposa User Manual v.1.0 49

JOI' N
| JOI N
ss( TTMpl) SS(TElMPZ) MERGE- SORT MERGE- SORT
SORT SORT | | | | |
| | SS( TEMP1) SS( TEMP2) SS( TEMP3) SS(TEMP4) SS( TEMP5)
MERGE MERGE | | | |
| I | |_I_| SORT SORT SORT SORT SORT
SS(EMP1) SS(EMP2) SS(EMP3) SS(DEPT1) SS(DEPT2) SS(EMP1) SS(EMP2) SS(EMP3) SS(DEPT1) SS(DEPT2)
Fragmented Plan A Fragmented Plan B
MERGE
JOI'N JOI'N JOI N JOI N
SS(TEMP1) SS(TEMP2) SS(TEMP3) SS(TEMP4) SS(TEMP5) SS(TEMP6) SS(TEMP7) SS(TEMP8)
SORT SORT SORT SORT SORT SORT SORT SORT
SS(EMP1) SS(DEPT1) SS(EMP1) SS(DEPT2) SS(EMP3) SS(DEPT1) SS(EMP3) SS(DEPT2)
JOIN JOI' N
SS( TEMP9) SS( TEMP10) SS(TEMP11) SS(TEMP12)
SORT SORT SORT SORT
SS(EMP2) SS(DEPT1) SS(EMP2) SS(DEPT2)

Fragmented Plan C

Figure 4: The fragmenter can produce different plans from one unfragmented plan by inserting merge nodes at
different placesin the plan tree.

The placement of merge nodesin aplan is controlled by the SQL extension:
SET FRAGVENTATI ON <fragnentation factor>;

where <f ragnment ati on factor> isan integer between 0 and 100 inclusive. As
the fragmenter works its way up the plan tree, there are various points at which it may
insert amerge node. At each one, the fragmenter generates a random number between 0
and 100. If the number is greater than the fragmentation factor, the fragmenter inserts a
merge node. If it is less than the fragmentation factor, it does not. Setting the
fragmentation factor to O (minimum parallelization) guarantees that the fragmenter will
produce a plan like Fragmented Plan A. Setting it to 100 (maximum parallelization)
guarantees a plan like Plan C. Setting p to a value between 0 and 100 will result in the
fragmenter producing a plan somewhere in between Plan A and Plan C, such as Plan B.

3.6.2 The Query Broker

The Mariposa query broker is responsible for determining the sites at which different

pieces of a queryiWbe processed. The query broker attempts to solve a user’s query as
far under the user’s bid curve as possible. First, it divides the query plan ygaimto
chunks. Then it contacts processing sites using either the short or long protocol. If the



Mariposa User Manual v.1.0 50

short protocol is used, the query broker selects the processing site for each plan chunk
without contacting the sites first. If the long protocol is used, the query broker solicits
bids from several processing sites for each plan chunk, then selects the group of bids
that will solve the query and be as far under the bid curve as possible.

In this section, first we explain bid curves. Then, we will discuss plan chunks. Finally,
we discuss the short and long protocols.

3.6.2.1 Bid Curves

A bid curveisaline in two dimensions. cost and del ay. Cost can bein any unit,
and del ay isin seconds. In this discussion, we will use dollars as the cost unit. By
defining the bid curve, a Mariposa user specifies how much money he or she will pay to
receive an answer within a given amount of time. A user defines a bid curve using the
SQL extension SET Bl DCURVE

SET BI DCURVE cost 1, delayl, cost2, delay2

(costl, delayl) and (cost2, delay2) aretwo points which define the bid

curve. For example, if the user were willing to pay $100 for an answer within five

seconds, and nothing for an answer after one minute, he or she would use the command:
SET BI DCURVE 100, 5, 0, 60

Which would define the curve shown below.

100

cost

0 60
delay

If the user wanted to specify that he or she was willing to pay a maximum of twenty
dollars, no matter how long the query took to be processed, the command would be:
SET BI DCURVE 20, 0, 20, 60

And would result in abid curve like the one below.

100

cost

delay



Mariposa User Manual v.1.0 51

3.6.2.2 Plan Chunks

After the query broker accepts the fragmented plan from the fragmenter, the first thing it
doesis to divide the fragmented plan into a set of non-overlapping subplans, called plan
chunks. Each plan chunk is sent out whole to potential processing sites. Dividing a
plan into many small chunks increases the potential for parallel and pipelined execution
of the plan, while dividing it into a few large chunks decreases potential parallelism and
pipelining.

Continuing with the example from Section 3.6.1, if the fragmenter produced
Fragmented Plan B from Figure 4, Figure 5 shows three of the possible groups of plan
chunks the query broker could produce. In Plan B-1, each plan chunk consists of
exactly one node in the plan tree. Therefore, each node in Plan B-1 could be processed
by a different server. In Plan B-2, the plan chunks are larger; the sequential scan nodes
are grouped with the sort nodes and the sequential scans on temporary relations. The
join node is grouped with the merge-sort nodes. In Plan B-3, the entire query is grouped
into one large plan chunk. Therefore, the entire query will be sent to potential
processing sites.

The size of plan chunks produced by the query broker can be set by the command
set chunksi ze <chunk-fact or>;

where <chunk- f act or > is an integer between 0 and 100 inclusive. As the query
broker moves from the leaves of the fragmented plan tree towards the roct, it generates a
random number between 0 and 100 at each step. If the number generated is greater than
<chunk- f act or >, the plan is cut off at that point and a plan chunk is created. If itis
less than or equal, the process continues.  If chunksi ze is set to 100 (coarsest) the
user is guaranteed to get aplan like B-3in Figure 5. If granularity is set to O (finest) the
user will get aplan like B-1. If it is set in between, the user will get a plan similar to B-
2.



Mariposa User Manual v.1.0 52

{ MERGE- SORT ) MVERGE- SORT

e

SS( TEMP1) SS( TEMP2) SS( TEMP3) SS( TEMP4) SS( TEMP5)

SORT SORT SORT SORT SORT

SS(EMP1) SS(EMP2) SS( EMP3) SS(DEPT1) SS(DEPT2)

Figure5: Plan Chunks

3.6.2.3 Bid Protocols

The query broker may follow either the short or long bidding protocol to determine the
site(s) at which a query will be executed. The bid protocol used by the query broker is
set with the SET bi dpr ot o command:

SET bidproto 'short’|'long’;

3.6.2.3.1 The Short Protocol

In the short protocol, the query broker sends each plan chunk to a single potential
processing site. In this case, the query broker attempts to select the site most likely to
have won the bidding process had the long protocol been used. The query broker
determines this based on advertising information and satistics it maintains about
previous queries.

Once the query broker has determined which sites it will contact, it returns the query
plan back to the coordinator, indicating which site is to be contacted to process each
plan chunk. The processing site may respond in one of two ways: either by processing
the subquery represented by the plan chunk, or by refusing to do so. In the current
Mariposa implementation, processing sites always agree to perform work reguested by
the query broker.



Mariposa User Manual v.1.0 53

3.6.2.3.2 The Long Protocol

In the long protocol, the query broker sends each plan chunk to a set of bidder sites,
which are potential processing sites. Each bidder site responds with a bid, which
specifies the cost and delay required to process the subquery. The query broker selects
the best bid for each plan chunk and notifies the losing sites. It then sends the query
plan back to the coordinator as in the short protocol, indicating the processing site for
each plan chunk.

3.6.3 The Bidder

The Mariposa bidder module accepts requests from query brokers to bid on work. Itsjob
is to determine the amount that the site will charge to process the given query plan
chunk and the expected processing time (delay).

3.6.3.1 Bidding

The bidder’s behavior is controlled entirely by a Tcl script, much like the data broker.
When the site manager process starts up, it looks for a file ¢alikder . t cl in the
directory $PGDATA/files. bi dder.tcl contains the procedur€et QueryBi d,
which should take no arguments and return a Tcl list of five elemeatponse,
price delay stal eness and accuracy, as explained in Table 8.

Element Description

response Oorl. 1=Bid. 0= Refuse to Bid

price The price, in dollars, that this site will charge to process the
query

delay The time, in seconds, for the site to process the query from
the time it starts processing. Delay does not include
network time.

staleness Reserved for future use. For now, it is sufficient to return
the value 0.0

accuracy Reserved for future use. For now, it is sufficient to return
the value 0.0

Table 8: The bidder’s response

To change the bidding policy, simply redefine the procedure GetQueryBid. To force the
bidder to reloadbi dder . t cl , issue the Tcl commariel ni t Bi dder from the site

manager’'stcl DMI> prompt.

We have provided some global variables, availabl€gbQuer yBi d, which may be
useful in formulating the bid. These are described in Table 9.



Mariposa User Manual v.1.0 54

Variable Name Value

hostid An integer identifying the ID of the machine the bidder is
running on.

contract The unique ID assigned to this contract by the Site Manager.

plan A string representing the plan tree.

rtable A Tdl list which contains information about the relations
and fragments accessed in the plan.

Table 9. These global variables are made availableto Get Quer yBi d.

CGet Quer yBi d may define other global variables and store datain them. These globals
will hold their values across future callsto Get Quer yBi d and other procedures in this
TcIDMT interpreter.

3.6.3.2 Thepl an and rt abl e global variables

The pl an and rt abl e variables require some explanation. The variable pl an is a
string that represents the plan tree for which the bidder is being asked to formulate a
bid. Itisarecursivelist of the form:

{ NODETYPE NODENUM { LEFTTREE} {RI GHTTREE} }

where NODETYPE is a string representing the operation, NODENUM is a unique
identifier for the node, and LEFTTREE and RIGHTTREE are the left and right
subplans, respectively. LEFTTREE and RIGHTTREE may be empty. If RIGHTTREE
is empty, LEFTTREE is also empty and the node is a leaf node. If there is a single
subplan, it will bein LEFTTREE.

There is one exception to the above format. Merge nodes, which were first discussed in
Section , may have more than two children. The format for merge nodesis:
{ NODETYPE NODENUM { {CHI LD:} {CHILD:}... {CH LDy} } }

where NODETYPE is “MERGE". The different node types and their explanations are
listed in Table 10.



Mariposa User Manual v.1.0 55

Node Nane Expl anati on Node For nat

MERGEJO N Mer ge- Joi n { MERGEJO N NODENUM {LEFT- TREE} {RI GHT TREE} }
NESTEDLOOP | Nested-Loop Join | { NESTEDLOOP NODENUM { LEFT- TREE} {RI GHT TREE} }
SEQSCAN Sequenti al Scan If over a base relation:

{ SEQSCAN NODENUM RTABLE- | NDEX FRAG- | NDEX {LEFT- TREE} }
If over a tenporary relation:
{ SEQSCAN NCDENUM -1 {LEFT- TREE} }

SORT Sor t { SORT NODENUM { LEFT- TREE} }
MERGE Mer ge { MERGE NODENUM { CHI LD} { CHILD,} ... { CH LD, }}
XI'N Exchange- I n” { XI N NODENUM { LEFT- TREE} }
AGG Aggr egat e, such | { AGG NODENUM { LEFT- TREE} }
as count ()
GROUPBY G oup- By node { GROUPBY NODENUM { LEFT- TREE} }
UNKNOWN Mari posa wi Il | {UNKNOWN NODENUM {LEFT-TREE} {RIGHT-TREE} }
fill in UNKNOMWN

if the node type
isn't  one it
recognizes.

Table 10: Plan Nodesin p/ an variable made available to Bidder

Thert abl e variable is alist of information about the tables referred to in the query
plan. rt abl e isshort for range table, which comes from the SQL syntax “range of
E is EMP". The range table provides information about the size, location and
fragmentation information of the tables referred to in the query plan. Itisin the form:

{ rangeTbl Entry rangeTbl Entry... }

where each rangeTbIEntry  isalist:
{ relnane refname relid fraglnfo }

and fraginfo  isalistin which each entry isin the form:
{ fralogicalid frastoreid frapages fratuples storagesites }

and (finally) storagesites isalist in which each entry is of the form:
{ port address hostid }

These entries are described in Table 11.

" These are added to plan trees in between nodes processed at different sites. An Exchange-In node accepts atuple
stream from aremote site and feeds it into the next node.




Mariposa User Manual v.1.0 56

Entry Nane Description
rel name The nane of the class.
r ef name The nane used to refer to the class in the query.
relid The O D of the class

fralogicalid

The O D shared by all copies of this fragment.

frastoreid

The O D for this copy of this fragnent

f rapages Si ze of fragment in pages.
fratupl es Size of fragment in tuples.

port TCP port (not used)

addr ess Net wor k address of storage site
hostid Hostid of storage site

Table 11:Entriesin r t abl e variable made available to Bidder

3.6.3.3 Thesubcont ract Command

In some cases, a bidder will be asked to bid on some operation that it cannot perform. It

can refuse to bid, as mentioned earlier, or it can subcontract out some or all of the work

to another processing site. For example, if a bidder is asked to perform a join between

two classes, A and B, and it has A but not B, it may choose to subcontract out the

sequential scan of B to another site. We have added the command subcont ract to

the Tcl provided with Mariposa. The format of the subcont ract command is:
subcontract <plan> <contract>

The subcontract returns a list of five dements. response, price, delay,

st al eness and accuracy, as described in Table 8. The <pl an> passed to
subcontract isany plan variable. It can be the entire string that was passed into the
bidder, or a part of the string representing a subplan. The <cont r act > passed to
subcontract is the global variable made available to the bidder and described in
Table 9. The Tcl bidder script needs to pass it back to identify the larger plan to which
the subplan belongs.

When a bidder uses the subcont ract command, the subplan is passed to the query

broker at the bidder’s site, which contacts potential processing sites, gets their bids, and
returns the best one to the bidder. The bidder can then add the subcontracted price and
delay into its own bid and return a completed bid to the query broker that contacted it
originally. If the bidder site is awarded the bid, the site manager automatically sends
out the subcontracted part of the plan to the appropriate site.

3.6.3.4 SampleBidder Script

A sample bidder script is included in Appendix A. The first procedBeeQuer yBi d,

must be included in all bidder scripts, as mentiortea/@ This bidder script includes

one procedure for each node typ@et Quer yBi d callsCost BasedBi d to calculate

the cost and delay (this bidder script ignores staleness and accuracy). CostBasedBid
takes the first element in the plan string passed in, which is the node type, and calls the
procedure of the same name. This bidder formulates a bid by recursively visiting the
nodes of the plan tree and assigning a cost and delay to each node. The final bid
returned byCost BasedBi d is the sum of the bids for all the nodes in the tree.
CGet Quer yBi d multiplies the cost element in the bid returnedCbgt BasedBi d by

the load average. In addition to the procedures corresponding to the node types, there



Mariposa User Manual v.1.0 57

are two utility procedures. Conmbi neBi ds “adds up” two bids and.oadAver age
returns the 5-, 30- and 60-second load averages.

The procedures which calculate a bid for each node type are similar in structure and
function. Each one first passes its children nodeSetoQuer yBi d and gets a bid

back. Then the delay and cost are calculated on a per-tuple and per-page basis. In
addition to calculating the cost and delay, each procedure also updates the values of the
global variablesnTupl es, andnPages. nTupl es is an estimate of the number of
tuples processed by the query node for which the procedure was gafades is the

same thing for the number of pages processed. These two variables are internal to the
example bidder - they are not part of the required bidder interfacegddikay and

cost.

The SEQSCAN procedure is more complicated than the others and we discuss it in more
detail. Like the other procedures, it calculates cost and delay on a per-tuple and per-
page basis. However, in addition to the argumerdasleNum and | ef t Tr ee,
SEQSCAN takes two additional argumentsscanl ndex and fragl ndex.

scanl ndex indicates the element in the range table corresponding to the relation
being scannedf r agl ndex indicates the element in tlie agl nf o list of the range

table entry for the fragment being scanned. They are us&&E@yCAN to access the
correct entries in the global variable rtabl&S8EQSCAN uses this information to tell
whether the scan is over a base relation or a temporary relation. If the scan is over a
base relation, the information contains fragment storage locations, and number of tuples
and number of pages in the fragment.

If SEQSCAN is called for a temporary relation, it behaves like the other procedures: it
calculates the cost and delay, then passes its child ndgai Quer yBi d.

If SEQSCAN is called for a base relation, it first checks to see if there is a copy of the
fragment stored locally. If so, it gets the number of tuples and number of pages in the
fragment from the range table. If there is no local copy, SEQSCAN calls
subcontract. Subcontract is a Tcl extension added for Mariposa and is
discussed in the next section.



Mariposa User Manual v.1.0 58

4. ADMINISTERING POSTGRES AND MARIPOSA

This section explains how to run the Mariposa processes, create a Mariposa database,
add and delete users, and perform other administrative functions. This section assumes
that you have aready installed Mariposa on each machine on which it will run. If you
have not installed Mariposa, refer to the Installation and Setup Guide.

Even if you are not the administrator of your database, you will find it useful to be
familiar with many of these tasks.

4.1 Frequent Tasks

This section discusses frequently-performed administrative tasks..

4.1.1 Sarting the Ste Manager

If you did not install POSTGRES exactly as described in the installation instructions,
you may have to perform some additional steps before starting the post mast er
process.

e Even if you were not the person who installed POSTGRES, you should
understand the installation ingtructions. The ingtallation instructions explain
some important issues with respect to where POSTGRES places some
important files, proper settings for environment variables, etc. that may vary
from one version of POSTGRES to another.

e You must start the post nast er process with the user-id that owns the
installed database files. In most cases, if you have followed the ingtallation
instructions, this will be the user “postgres”. If you do not start the
post mast er with the right user-id, the backend servers that are started by the
post mast er will not be able to read the data.

¢« Make sure that usr/ | ocal / post gr es95/ bi n is in your shell command
path, because thpost nast er will use your PATH to locate POSTGRES
commands.

< Remember to set the environment varidP@GDATA to the directory where the
POSTGRES dtabases are installed. (This variable is more fully explained in
the POSTGRES installation instructions.)

« If you do start thepost mast er using non-standard options, such as a
different TCP port number, remember to tell all users so that they can set their
PGPORT environment variable correctly.



Mariposa User Manual v.1.0 59

4.1.2 Shutting Down the Postmaster

If you need to halt the post mast er process, you can use the UNIX kill (1)
command. Some people habitually use the - 9 or - KI LL option; this should never be
necessary and the POSTGRES group does not recommend that you do this, because the
post mast er will be unableto freeits various shared resources, its child processes will
be unable to exit gracefully, etc.

4.1.3 Adding and Removing Users

The createuser and destroyuser commands enable and disable access to
POSTGRES by specific users on the host system.

4.1.4 Periodic Upkeep

4.1.5 Tuning

The vacuum command should be run on each database periodically. This command
processes deleted instances’ and, more importantly, updates the system statistics
concerning the size of each class. If these statistics are permitted to become out-of-date
and inaccurate, the POSTGRES query optimizer may make extremely poor decisions
with respect to query evaluation strategies. Therefore, you should run vacuum every
night or so (perhaps in a script that is executed by the UNIX cron(1) orat(1)
commands).

Perform frequent backups. That is, you should either back up your database directories

using the POSTGRES copy command and/or the UNIX dunp( 1) or tar(1)
commands. You may think, “Why am | backing up my database? What about crash
recovery?” One side effect of the POSTGRES “no overwrite” storage manager is that it
is also a “no log” storage manager. That is, the database log stores only abort/commit
data, and this is not enough information to recover the database if the storage medium
(disk) or the database files are corrupted! In other words, if a disk block goes bad or
POSTGRES happens to corruptatabase file, you cannot recover that file. This can be
disastrous if the file is one of the shared catalogs, suplg adat abase.

Once your users start to load a significant amount of data, you will typically run into
performance problems. POSTGRES is not the fastest DBMS in the world, but many of
the worst problems encountered by users are due to their lack of experience with any
DBMS. Some general tips include:

« Define indices over attributes that are commonly used for qualifications. For
example, if you often execute queries of the form

SELECT * from EMP where sal ary < 5000

then a B-tree index on theal ary attribute will probably be useful. If scans
involving equality are more common, as in

SELECT * from EMP where sal ary = 5000

" This may mean different things depending on the archive mode with which each class has been created. However,
the current implementation of the vacuumcommand does not perform any compaction orclustering of data.
Therefore, the UNIX files that store each POSTGRES class never shrink and the space reclaimed by vacuumis
never actually reused.



Mariposa User Manual v.1.0 60

then you should consider defining a hash index on sal ary. You can define
both, though it will use more disk space and may slow down updates a bhit.
Scans using indices are much faster than sequential scans of the entire class.

¢ Run the vacuum command frequently. This command updates the statistics
that the query optimizer uses to make intelligent decisions; if the statistics are
inaccurate, the system will make inordinately stupid decisions with respect to
the way it joins and scans classes.

¢ When specifying query qualfications (i.e., the wher e part of the query), try to
ensure that a clause involving a constant can be turned into one of the form
range_vari abl e operator constant,eg.,

EMP. sal ary = 5000
The POSTGRES query optimizer will only use an index with a constant
gualification of this form. It doesn’t hurt to write the clause as

5000 = EMP. sal ary

if the operator (in this case) has a commutator operator defined so that
POSTGRES can rewrite the query into the desired form. However, if such an
operator does not exist, POSTGRES will never consider the use of an index.

¢ When joining several classes together in one query, try to write the join clauses
in a “chained” form, e.g.,

where A.a = B.b and B.b = C.c and ...

Notice that relatively few clauses refer to a given class and attribute; the clauses
form a linear sequence connecting the attributes, like links in a chain. This is
preferable to a query written in a “star” form, such as

where A.a = B.b and AAa = C.c and ...

Here, many clauses refer to the same class and attribute (in thig\cake,
When presented with a query of this form, the POSTGRES quémyipgr will
tend to consider far more choices than it should and may run out of memory.

¢ If you are really desperate to see what query plans look like, you can run the
post mast er with the- d option and then rumoni t or with the -t
option. The format in which query plans will be printed is hard to read but you
should be able to tell whether any index scans are being performed.

4.2 Infrequent Tasks

At some time or another, evePOSTGRES site administrator has to perfalinof the
following actions.

4.2.1 Cleaning Up After Crashes

Thepost gr es server and thpost mast er run as two different processes. They may
crash separately or together. The housekeeping procedures required to fix one kind of
crash are different from those required to fix the other.

The message you will usually see when the backend server crashes is:
FATAL: no response from backend: detected in ...



Mariposa User Manual v.1.0 61

This generally means one of two things. there is a bug in the POSTGRES server, or
thereis abug in some user code that has been dynamically loaded into POSTGRES. Y ou
should be able to restart your application and resume processing, but there are some
considerations:

POSTGRES usually dumps a core file (a snapshot of process memory used for
debugging) in the database directory

/usr/ |l ocal / post gres95/ dat a/ base/ <dat abase>/ core

on the server machine. If you don’t want to try to debug the problem or produce
a stack trace to report the bug to someone else, you can delete this file (which is
probably around 10MB). (2) When one backend crashes in an uncontrolled
way (i.e., without calling its built-in cleanup routines), fhaest nast er will

detect this situation, kill all running servers and reinitialize the state shared
among all backends (e.g., the shared buffer pool and locks). If your server
crashed, you will get the “no response” message shtewea If your server

was killed because someone else’s server crashed, you will see the following
message:

I have been signalled by the postnaster.

Some backend process has di ed unexpectedly and possibly
corrupted shared nenory. The current transaction was

aborted, and | amgoing to exit. Please resend the
last query.—The postgres backend

Sometimes shared state is not completely cleaned up. Frontend applications
may see errors of the form:

WARN: cannot write block 34 of myclass [mydb] blind

In this case, you should kill the postmaster and restart it.

When the system crashes while updating the system catalogs (e.g., when you

are creating a class, defining an index, retrieving into a class, etc.) the B-tree
indices defined on the catalogs are sometimes corrupted. The general (and non-
unique) symptom is that all queries stop working. If you have tried al of the

above steps and nothing else seems to work, try using the rei ndexdb
command. If rei ndexdb succeeds but thinggils don't work, you have
another problem; if it fails, the system catalogs themselves were almost
certainly corrupted and you will have to go back to your backups.

Thepost nast er does not usually crash (it doesn’t do very much except start
servers) but it does happen on occasion. In addition, there are a few cases where
it encounters problems during the reinitialization of shared resources.
Specifically, there are race conditions where the operating system lets the
post mast er free shared resources but then will not permit it to reallocate the
same amount of shared resources (even when there is no contention).

You will typically have to run thépccl ean command if system errors cause

the post mast er to crash. If this happens, you may find (using the UNIX

i pcs(1l) command) that the “postgres” user has shared memory and/or
semaphores allocated even thouglpost mast er process is running. In this

case, you should runpccl ean as the “postgres” user in order to deallocate
these resources. Be warned that all such resources owned by the “postgres” user
will be deallocated. If you have multipfgost mast er processes running on

the same machine, you should kill all of them before runnipgcl ean



Mariposa User Manual v.1.0 62

(otherwise, they will crash on their own when their shared resources are
suddenly deallocated).

4.2.2 Moving Database Directories

By default, all POSTGRES databases are stored in separate subdirectories under
/usr/ 1 ocal / post gres95/ dat a/ base. ° At some point, you may find that you
wish to move one or more databases to another location (e.g., to a filesystem with more
free space).

If you wish to move al of your databases to the new location, you can simply:

1

2.

Kill the postmaster.

Copy the entire dat a directory to the new location. (Making sure that the new files

are owned by user “postgres”).

%cp -rp /usr/local/postgres95/data /new pl ace/ data

Reset youPGDATA environment variable (as described earlier in this manual and
in the installation instructions).

# using csh or tcsh...
% set env PGDATA / new pl ace/ dat a

# using sh, ksh or bash...
% PGDATA=/ new/ pl ace/ dat a; export PGDATA

Restart thpost nast er.

% post master &

After you run some queries and are sure that the newly-moved database works, you
can remove the oldat a directory.

% rm-rf /usr/local/postgres95/data

To install a single database in an alternate directory while leaving all other databases in
place, do the following:

1.

Create the database (if it doesn’t already exist) using the createdb command. In the
following steps assume the database is nanoed

Kill the post mast er.

Copy the directory/ usr/ | ocal / post gr es95/ dat a/ base/foo and its
contents to its ultimate destination. It should still be owned by the “postgres” user.
% cp -rp /usr/local/postgres95/datal/ base/foo /new place/foo

Remove the directory /usr/local/postgres95/data/base/foo:

% rm-rf /usr/local/postgres95/datal/base/foo

Make a symbolic link from’ usr/ | ocal / post gr es95/ dat a/ base to the
new directory:

8 Datafor certain classes may be stored elsewhere if a nonstandard storage manager was specified when the classes
were created. Use of nonstandard storage managersis an experimental feature that is not supported outside of

Berkeley.



Mariposa User Manual v.1.0 63

%Iln -s /new place/foo /usr/local/postgres95/datal/ base/foo

1. Restartthe post master.

4.2.3 Updating Databases

POSTGRES is a research system. In general, POSTGRES may not retain the same
binary format for the storage of databases from release to release. Therefore, when you
update your POSTGRES software, you will probably also have to modify your databases.
Thisis acommon occurrence with commercial database systems as well. Unfortunately,
unlike commercial systems, POSTGRES does not come with user-friendly utilities to
make your life easier when these updates occur.

In general, you must do the following to update your databases to a new software
release:

e Extensions (such as user-defined types, functions, aggregates, etc.) must be
reloaded by re-executing the SQL CREATE commands. See Appendix A for
more details.

¢ Data must be dumped from the old classes into ASCII files (using the COPY
command), the new classes created in the new database (using the
CREATETABLE command), and the data rel oaded from the ASCI| files.

¢ Rules and views must also be reloaded by re-executing the various CREATE
commands.

You should give any new release a trial period; in particular, do not delete the old
database until you are satisfied that there are no compatibility problems with the new
software. For example, you do not want to discover that a bug in a type’s “input”
(conversion from ASCII) and “output” (conversion to ASCII) routines prevents you from
reloading your data after you have destroyed your old databases. (This should be
standard procedure when updating any software package, but some people try to
economize on disk space without applying enough foresight.)

4.3 Database Security

Most sites that use POSTGRES are ational or research institutions and are
generally not greatly concerned about security in tR&dSTGRES insllations. If
desired, you can instafOSTGRES with adtional security features, such as the MIT
Kerberos network authentication system. Naturally, such features come with additional
administrative overhead that must be dealt with.

4.3.1 Kerberos

POSTGRES can be configured to use the MIT Kerberos network autitemtisystem.
This prevents outside users from connecting to your databases over the network without
the correct authentication information.

4.4 Querying the System Catalogs

From time to time, you may want to find out what extensions have been added to a given
database. The queries listed below are “canned” queries that you can run on any
database to get simple answers. Before executing any of the queries below, be sure to



Mariposa User Manual v.1.0 64

execute the POSTGRES vacuumcommand. (The queries will run much more quickly
that way.) Also, note that these queries are also listed in
/usr/local / postgres95/tutorial/syscat.sql

(Y ou can use cut-and-paste (or the \ i command) instead of doing alot of typing.)

This query prints the names of all database administrators and the name of their
database(s).

SELECT usenane, datnane

FROM pg_user, pg_dat abase

WHERE usesysi d = int2in(int4out(datdba))

ORDER BY usenane, dat nane;

This query lists all user-defined classes in the database.
SELECT rel nane
FROM pg_cl ass
WHERE relkind = ‘r—not indices
and relname !~ ‘*pg_'—not catalogs
and relname !~ ‘"Inv'—not large objects
ORDER BY relname;

This query lists all simple indices (i.e., those that are not defined over a function of
several attributes).

SELECT bc.relname AS class_name,

ic.relname AS index_name,

a.attname

FROM pg_class bc, -- base class

pg_class ic, -- index class

pg_index i,

pg_attribute a—att in base

WHERE i.indrelid = bc.oid

and i.indexrelid = ic.oid

and i.indkey[0] = a.atthum

and a.attrelid = bc.oid

and i.indproc = ‘0’::0id—no functional indices

ORDER BY class_name, index_name, attname;

This query prints a report of the user-defined attributes and their types for all user-
defined classes in the database.
SELECT c.relname, a.attname, t.typname
FROM pg_class c, pg_attribute a, pg_type t
WHERE c.relkind = ‘r—no indices
and c.relname !~ “*pg_'—no catalogs
and c.relname !~ ‘“*Inv'—no large objects
and a.atthum > 0 -- no system att’s
and a.attrelid = c.oid
and a.atttypid = t.oid
ORDER BY relname, atthame;

This query lists all user-defined base types (not including array types).
SELECT u.usename, t.typname
FROM pg_type t, pg_user u
WHERE u.usesysid = int2in(int4out(t.typowner))
and t.typrelid = ‘0"::0id—no complex types
and t.typelem = ‘0"::0id—no arrays
and u.usename <> ‘postgres’
ORDER BY usename, typname;



Mariposa User Manual v.1.0 65

This query lists al left-unary (post-fix) operators.
SELECT o. oprnane AS | eft_unary,
ri ght.typnanme AS operand,
result.typname AS return_type
FROM pg_operator o, pg_type right, pg_type result
WHERE o.oprkind = ‘I'—left unary
and o.oprright = right.oid
and o.oprresult = result.oid
ORDER BY operand;

This query lists al right-unary (pre-fix) operators.
SELECT o.oprname AS right_unary,
left.typname AS operand,
result.typname AS return_type
FROM pg_operator o, pg_type left, pg_type result
WHERE o.oprkind = ‘r—right unary
and o.oprleft = left.oid
and o.oprresult = result.oid
ORDER BY operand;

This query lists al binary operators.
SELECT o.oprname AS binary_op,
left.typname AS left_opr,
right.typname AS right_opr,
result.typname AS return_type

FROM pg_operator o, pg_type left, pg_type right, pg_type
result

WHERE o.oprkind = ‘b’—binary
and o.oprleft = left.oid

and o.oprright = right.oid

and o.oprresult = result.oid
ORDER BY left_opr, right_opr;

This query returns the name, number of arguments (parameters) and return type of all
user-defined C functions. The same query can be used to find all built-in C functions if
you change the “C” to “internal”, or all SQL functions if you change the “C” to
“postquel”.

SELECT p. pronane, p.pronargs, t.typnanme

FROM pg_proc p, pg_l anguage |, pg_type t

WHERE p.prolang = 1.0id

and p.prorettype =t.oid

and l.lanname = ‘¢’

ORDER BY proname;

This query lists all of the aggregate functions that have been ingtalled and the types to
which they can be applied. count is not included because it can take any type as its
argument.

SELECT a.aggname, t.typname

FROM pg_aggregate a, pg_type t

WHERE a.aggbasetype = t.oid

ORDER BY aggname, typname;

This query lists al of the operator classes that can be used with each access method as
well as the operators that can be used with the respective operator classes.

SELECT am.amname, opc.opchame, opr.oprname

FROM pg_am am, pg_amop amop, pg_opclass opc, pg_operator opr

WHERE amop.amopid = am.oid



Mariposa User Manual v.1.0

and anop. anopcl aid = opc. o
and anop. anopopr = opr.oid
CORDER BY amane, opcnhane,

id

opr nane;

66



Mariposa User Manual v.1.0 67

Appendices

A. Sample Bidder Script

This bidder script is in ‘$SPGDATA/base/files/bidder.tcl’. It gives an idea of how a cost-
based bidder might be constructed. It looks at each node in the query plan passed in and
charges a fixed amount at each node per page and/or per tuple. It multiplies the cost
element of the bid by the current load average.

BRAHHHHHHH R R R R R R

# bi dder.tcl

#

# Input: plan tree, represented as a string

# Qutput: list containing {response cost delay stal eness accuracy}
#

# response: BIDif all data fragnments references in the
# query are local. REFUSETOBID otherwi se

#

# cost: Based on the per-tuple and per-page charge for
# each node in the query plan

#

# del ay: Based on the per-tuple and per-page delay for
# each node in the query plan

#

# st al eness, accuracy: ignored

#

# Recursively descends the plan tree, keeping track of the nunber of pages
# and nunber of tuples generated, and adding up the cost and delay unti

# the root is reached. At this point, the total cost and total delay have
# been calculated. Miltiplies cost by the current |oad average. |gnores

# stal eness and accuracy.

HAHBHIRH B H IR H B H R H B H R H R R H R H R H R H R R R R R R R R R H SRR

# d obal variables
set BID 1
set REFUSETOBID 0

g
# LoadAverage: Utility routine

#

# I nput: void

# Qutput: 5-, 30-, and 60-second | oad averages
g

proc LoadAverage {} {
set result [exec uptine]

set len [Ilength $result]
set result [lrange $result [expr "$len - 3"] [expr "$len - 1"]]
regsub -all , $result "" res2

return $res2



Mariposa User Manual v.1.0

- S T N T N N N N ..
#

# Conbi neBi ds

#

# Input: two bids, bidl and bid2

#

# Qutput: bid that results from conbining bidl and bid2

#

# response: BID if both bidl and bid2 responses are BID

# REFUSETOBI D ot her wi se

#

# cost: bi d1. cost + bi d2. cost

#

# del ay: bi d1. del ay + bi d2. del ay

#

# st al eness: MAX(bi d1. st al eness, bi d2. stal eness)

#

# accuracy: M N(bidl.accuracy, bid2.accuracy)

#
o

proc Conbi neBids {bidl bid2} {
gl obal BI D REFUSETOBI D

set responsel [lindex $bidl 0]
set response2 [lindex $bid2 0]
set costl [lindex $bidl 1]

set cost2 [lindex $bid2 1]

set delayl [lindex $hidl 2]
set delay2 [lindex $hid2 2]
set stalel [lindex $bidl 3]
set stale2 [lindex $bid2 3]
set accl [lindex $bidl 4]

set acc2 [lindex $bid2 4]

set response [expr ($responsel && $response2) ? $BID : $REFUSETOBI D]
set cost [expr $costl + $cost 2]

set delay [expr $delayl + $del ay?2]

set stale [expr ($stalel > $stale2) ? $stalel : $stal e?]

set acc [expr ($accl < $acc2) ? $accl : $acc?]

return [list $response $cost $del ay $stal e $acc]



Mariposa User Manual v.1.0

- S T N T N N N N ..
#

# MERGEJO N

#

# Input: left sub-tree, right sub-tree

#

# Qutput: bid

#

# Updat es nTupl es and nPages - guesses one match for each outer

# tuple.

He s m s e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m oo

proc MERGEJO N {nodeNum | eft Tree rightTree {junk {}} } {

gl obal BI D REFUSETOBI D
gl obal nTupl es
gl obal nPages
gl obal rtable
gl obal hostid

set per Tupl eCharge . 001
set per Tupl eDel ay . 000400

set | eftSubBid [ CostBasedBid $l eftTree]
set leftTuples $nTupl es
set |eftPages $nPages

set rightSubBid [ CostBasedBi d $rightTree]
set right Tupl es $nTupl es
set rightPages $nPages

# Fill in arbitrary values if nothing is known about
# the results of the join’s children.
if {$leftTuples == 0} {
set leftTuples 10000
}
if {$rightTuples == 0} {
set rightTuples 10000
}
if {$leftPages == 0} {
set leftPages 100
}
if {$rightPages == 0} {
set rightPages 100
}

# Each outer and inner tuple is touched once.
set delay [expr ($leftTuples + $rightTuples) * $perTupleDelay]
set cost [expr ($leftTuples + $rightTuples) * $perTupleCharge]

# Wild guess - one match for each outer tuple
set nTuples $leftTuples

set bid [CombineBids $leftSubBid $rightSubBid]
set bid [CombineBids $bid [list $BID $cost $delay 0.0 0.0]]

return $bid

69



Mariposa User Manual v.1.0

- S T N T N N N N ..
#

# NESTEDLOOP

#

# Input: left sub-tree, right sub-tree

#

# Qutput: bid

#

# Updat es nTupl es and nPages - guesses one match for each outer

# tuple.

He s m s e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m oo

proc NESTEDLOOP {nodeNum | eft Tree rightTree {junk {}} } {

gl obal BI D REFUSETOBI D
gl obal nTupl es
gl obal nPages
gl obal rtable
gl obal hostid

set per Tupl eCharge . 001
set per Tupl eDel ay . 000400

set | eftSubBid [ CostBasedBid $l eftTree]
set leftTuples $nTupl es
set |eftPages $nPages

set rightSubBid [ CostBasedBi d $rightTree]
set right Tupl es $nTupl es
set rightPages $nPages

# Each inner tuple is touched once per outer tuple
set delay [expr ($leftTuples * $rightTuples) * $per Tupl eDel ay]
set cost [expr ($leftTuples * $rightTuples) * $per Tupl eChar ge]

# WI1d guess - one match for each outer tuple
set nTupl es $l eft Tupl es

set bid [ Conbi neBi ds $l eft SubBi d $ri ght SubBi d]
set bid [ConbineBids $hid [list $BI D $cost $delay 0.0 0.0]]

return $bid



Mariposa User Manual v.1.0 71

- S T N T N N N N ..
# SEQSCAN

# Input: scanlndex, fraglndex, left sub-tree

# Qutput: bid

#

# Updat es nTupl es and nPages based on information in range table

#
=

proc SEQSCAN {nodeNum scanl ndex fraglndex {leftTree {}} } {

gl obal BI D REFUSETOBI D
gl obal contract

gl obal nTupl es

gl obal nPages

gl obal rtable

gl obal hostid

# no extra charge per tuple
set per Tupl eCharge 0

# 5 cents per page
set per PageCharge .05

# delay in seconds per tuple retrieved (not including disk 1/0
set per Tupl eDel ay . 000600

# delay in seconds per disk page accessed
set per PageDel ay .002200

# Scan on a tenporary relation, the result of a sort,

# join, etc. Just use the values of nTuples and nPages

# generated so far.

if {$scanlndex == -1} {
set nTupl es 10000
set nPages 100
set cost [expr $nTuples * $per Tupl eCharge + $nPages * $per PageChar ge]
set delay [expr $nTuples * $perTupl eDel ay + $nPages * $per PageDel ay]
set bid [ ConbineBids "$BI D $cost $delay 0.0 0.0" [ CostBasedBid $l eft Tree]]
return $bid

} else {

# Scan on a base relation - set nTuples and nPages
# fromrtable information
# Only bid if the fragment is stored at this site

set rte [lindex $rtable $scanl ndex]
set frags [lindex $rte 3]
set flnfo [lindex $frags $fragl ndex]

# Determine if one of the storage sites is this one
set storageSites [lindex $fInfo 4]

set local false

foreach site $storageSites {
set storageHost [lindex $site 2]
if {$storageHost == $hostid} {
set local true
br eak



Mariposa User Manual v.1.0 72

set nTuples [lindex $fInfo 3]
set nPages [lindex $flnfo 2]

# |f sequential scan is over a fragnent that we own, bid on it.
# Otherwi se, subcontract out the sequential scan to another site
if {$local} {
set response $BI D
set cost [expr $nTuples * $per Tupl eCharge + $nPages * $per PageChar ge]
set delay [expr $nTuples * $per Tupl eDel ay + $nPages * $per PageD el ay]
} else {
set subPl an "{SEQSCAN $nodeNum $scanl ndex $fragl ndex}"
set subBid [subcontract $subPlan $contract]
set response [|index $subBid 0]
set cost [lindex $subBid 1]
set delay [lindex $subBid 2]

}

}

return [list $response $cost $delay 0.0 0.0]
}
# __________________________________________________________________________
#
# SORT
#
# Input: left subtree
# Qutput: bid
#

# Charges a fixed price per tuple and per page
proc SORT {nodeNum {leftTree {}} {junk {}} {junk2 {}} } {
gl obal Bl D REFUSETOBI D

gl obal nTupl es
gl obal nPages
gl obal rtable
gl obal hostid

set per Tupl eCharge . 001

set per Tupl eDel ay . 000400

set | eftSubBid [ CostBasedBid $I eftTree]
set leftTuples $nTupl es

if {$leftTuples == 0} {
set |eftTuples 10000
set nTupl es 10000

}

set cost [expr $leftTuples * $per Tupl eChar ge]
set delay [expr $leftTuples * $perTupl eDel ay]
set bid "$BI D $cost $delay 0.0 0.0"

set bid [ ConbineBids $leftSubBid $bid]

return $bid



Mariposa User Manual v.1.0

- S T N T N N N N ..
#

# MERGE

#

# I nput: nodeNum chil dren nodes

# Qutput: bid

#

# Charges a fixed price per tuple for the nerge

#

proc MERGE {nodeNum subTreeList {junk {}} {junk2 {}} } {

gl obal BI D REFUSETOBI D
gl obal nTupl es
gl obal nPages
gl obal rtable
gl obal hostid

set per Tupl eCharge .001
set per Tupl eDel ay . 000400

set bid [list $BID 0.0 0.0 0.0 0.0]
set nergeTuples O
set mergePages 0

# For each child node, get the bid for the subplan and
# conbine it with the current bid. Keep track of the
# nunber of tuples and pages in the children nodes
foreach subPl an $subTreelLi st {
set bid [ Conbi neBi ds $bi d [ CostBasedBi d $subPl an] ]
incr mergeTupl es $nTupl es
i ncr mergePages $nPages
}
set cost [expr $mergeTuples * $per Tupl eChar ge]
set delay [expr $mergeTuples * $per Tupl eDel ay]
set bid [ ConbineBids $bid [list $BI D $cost $delay 0.0 0.0]]

return $bid
}
g
#
# XIN
#
# I nput: nodeNum |eftTree
# Qutput: bid
#

# Charges a fixed price per tuple
proc XIN {nodeNum leftTree {junk {}} {junk2 {}} } {

gl obal BI D REFUSETOBI D
gl obal nTupl es

set per Tupl eCharge . 001
set per Tupl eDel ay . 000400

set | eftSubBid [ CostBasedBid $l eft Tree]
set leftTuples $nTupl es

if {$leftTuples == 0} {

73



Mariposa User Manual v.1.0

set | eftTuples 10000
set nTupl es 10000

set cost [expr $leftTuples * $per Tupl eChar ge]
set delay [expr $leftTuples * $per Tupl eDel ay]

set bid "$BID $cost $delay 0.0 0.0"
set bid [ Conbi neBids $| eftSubBid $bid]

return $bid
}
< S T e T N e e N .
#
# ACG
#
# I nput: nodeNum |eft subtree
# Qutput: bid
He e s st e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e mm e e a oo

proc AGG {nodeNum | eftTree {junk {}} {junk2 {}} } {

gl obal Bl D REFUSETOBI D
gl obal nTupl es

set per Tupl eCharge . 001
set per Tupl eDel ay . 000400

set | eftSubBid [ CostBasedBid $l eftTree]
set leftTuples $nTupl es

if {$leftTuples == 0} {
set |eftTuples 10000
set nTupl es 10000

}

set cost [expr $leftTuples * $per Tupl eChar ge]
set delay [expr $leftTuples * $per Tupl eDel ay]
set bid "$BID $cost $delay 0.0 0.0"

set bid [ Conbi neBi ds $l ef t SubBi d $bi d]

return $bid
}
He s s s e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo
#
# GROUPBY
#
# I nput: nodeNum |eft subtree
# Qutput: bid
o

proc GROUPBY {nodeNum |l eftTree {junk {}} {junk2 {}} } {

gl obal BI D REFUSETOBI D
gl obal nTupl es

set per Tupl eCharge . 001
set per Tupl eDel ay . 000400

set |l eftSubBid [ CostBasedBid $l eftTree]
set leftTuples $nTupl es



Mariposa User Manual v.1.0

if {$leftTuples == 0} {
set | eftTuples 10000
set nTupl es 10000

}

set cost [expr $leftTuples * $per Tupl eChar ge]
set delay [expr $l eftTuples * $per Tupl eDel ay]
set bid "$BID $cost $delay 0.0 0.0"

set bid [ Conbi neBids $| eftSubBid $bid]

return $bid

# Don’t bid on plans that contain nodes we can’'t identify.

proc UNKNOMN {nodeNum | eft Tree rightTree {junk {}} } {
gl obal BI D REFUSETOBI D

return [list $REFUSETOBID 0 0 0 0]

-

H

Cost BasedBi d
I nput: query plan
Qutput: bid

Mai n procedure. Looks at token representing the node type and calls
the appropriate bidding routine

HoH oH oH W W W W W

proc CostBasedBid {plan} {
gl obal rtable
gl obal hostid
gl obal contract
gl obal nTupl es
gl obal nPages
gl obal Bl D REFUSETOBI D

if {$plan I=""} {
set nodeType [|index $plan O]

set bid [$nodeType [lindex $plan 1 ] [lindex $plan 2 ] [lindex $plan 3 ]
[lindex $plan 4]]

} else {
set bid [list $BID 0 0 0 O]

}

return $bid



Mariposa User Manual v.1.0

- S T N T N N N N ..
#

# Get QueryBid

#

# Input: query plan

# Qutput: bid

#

# Main procedure. Calls CostBasedBid and nultiplies result by current

# | oad average

proc Get QueryBid {plan} {
gl obal rtable
gl obal hostid
gl obal contract
gl obal nTupl es
gl obal nPages
gl obal BI D REFUSETOBI D

set bid [ CostBasedBid $plan]

set las [exec uptine]

set len [Ilength $Ias]

set result [lrange $las [expr "$len - 3"] [expr "$len - 1"]]
regsub -all , $las "" las

set la [lindex $las 2]

set cost [lindex $bid 1]

set cost [expr "$cost * (1 + $la)"]

set bid [Ireplace $bhid 1 1 $cost]

return $bid



