
M A R I P O S A
DISTRIBUTED DATABASE MANAGEMENT SYSTEM

USER’S MANUAL

Mariposa User Manual v.1.0 2

Mariposa is copyrighted by the Regents of the University of California. Permission to
use, copy, modify, and distribute this software and its documentation for educational,
research, and non-profit purposes and without fee is hereby granted, provided that both
the copyright notice, this permission notice, and the following two paragraphs appear in
supporting documentation. Permission to use, copy, modify, and distribute is granted
provided the name of the University of California not be used in advertising or publicity
pertaining to distribution of the software without specific written prior permission.
Permission to incorporate this software into commercial products can be obtained from
the Campus Software Office, 1150 Shattuck Ave., University of California, Berkeley,
California 94720. The University of California makes no representations about the
suitability of this software for any purpose. It is provided without express or implied
warranty.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED THEREUNDER IS
ON AN “AS IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Mariposa User Manual v.1.0 3

TABLE OF CONTENTS

1. INTRODUCTION .. 5

1.1 WHAT IS MARIPOSA? ... 5
1.2 USING THIS MANUAL... 6
1.3 OVERVIEW OF THE ARCHITECTURE ... 6

2. POSTGRES .. 8

2.1 THE QUERY LANGUAGE, POSTGRES SQL... 9
2.1.1 Creating a New Class .. 10
2.1.2 Populating a Class with Instances .. 10
2.1.3 Querying a Class ... 11
2.1.4 Redirecting SELECT Queries ... 12
2.1.5 Joins Between Classes ... 13
2.1.6 Updates ... 13
2.1.7 Deletions ... 14
2.1.8 Using Aggregate Functions.. 14

2.2 ADVANCED POSTGRES SQL FEATURES... 15
2.2.1 Inheritance .. 15
2.2.2 Time Travel ... 16
2.2.3 Non-Atomic Values: Arrays ... 16

2.3 POSTGRES EXTENSIBILITY.. 18
2.3.1 The POSTGRES Type System ... 18
2.3.2 About the POSTGRES System Catalogs ... 18

2.4 EXTENDING SQL: FUNCTIONS ... 21
2.4.1 Query Language (SQL) Functions.. 21

2.4.1.1 SQL Functions on Base Types..21
2.4.1.2 SQL Functions on Composite Types...21

2.4.2 Programming Language Functions .. 23
2.4.2.1 Programming Language Functions on Base Types..23
2.4.2.2 Programming Language Functions on Composite Types...25
2.4.2.3 Caveats..26

2.5 EXTENDING SQL: TYPES... 27
2.5.1 Functions Needed for a User-Defined Type .. 27

2.6 EXTENDING SQL: OPERATORS... 29
2.7 EXTENDING SQL: AGGREGATES ... 29
2.8 INTERFACING EXTENSIONS TO INDICES... 31
2.9 THE POSTGRES RULE SYSTEM... 36

3. MARIPOSA.. 37

3.1 MARIPOSA MODULES... 37
3.2 A DISTRIBUTED EXAMPLE.. 38

3.2.1 Creating a Mariposa Class .. 39
3.2.2 Splitting a Class into Fragments .. 40
3.2.3 Moving Fragments ... 41
3.2.4 Copying a Fragment .. 42

3.3 THE MARIPOSA REPLICA SYSTEM.. 42
3.3.1 Creating a Copy .. 43
3.3.2 Dropping a Copy ... 43
3.3.3 Moving a Copy .. 43

3.4 MARIPOSA NAME SERVICE .. 43
3.4.1 Setting Up Name Service ... 44

Mariposa User Manual v.1.0 4

3.4.2 Specifying A Primary Name Server .. 45
3.5 THE MARIPOSA DATA BROKER... 45
3.6 QUERY PROCESSING IN MARIPOSA.. 47

3.6.1 The Fragmenter ... 47
3.6.1.1 Fragmented Query Plans ..47

3.6.2 The Query Broker .. 49
3.6.2.1 Bid Curves ..50
3.6.2.2 Plan Chunks ..51
3.6.2.3 Bid Protocols ...52

3.6.2.3.1 The Short Protocol..52
3.6.2.3.2 The Long Protocol ..53

3.6.3 The Bidder ... 53
3.6.3.1 Bidding ...53
3.6.3.2 The plan and rtable global variables ...54
3.6.3.3 The subcontract Command...56
3.6.3.4 Sample Bidder Script ...56

4. ADMINISTERING POSTGRES AND MARIPOSA... 58

4.1 FREQUENT TASKS.. 58
4.1.1 Starting the Site Manager .. 58
4.1.2 Shutting Down the Postmaster ... 59
4.1.3 Adding and Removing Users .. 59
4.1.4 Periodic Upkeep .. 59
4.1.5 Tuning ... 59

4.2 INFREQUENT TASKS... 60
4.2.1 Cleaning Up After Crashes .. 60
4.2.2 Moving Database Directories .. 62
4.2.3 Updating Databases .. 63

4.3 DATABASE SECURITY... 63
4.3.1 Kerberos.. 63

4.4 QUERYING THE SYSTEM CATALOGS.. 63

Mariposa User Manual v.1.0 5

1. INTRODUCTION

1.1 What is Mariposa?

The Mariposa distributed database management system is an ongoing research project at
the University of California at Berkeley. Mariposa addresses fundamental problems in
the standard approach to distributed data management. We believe that the underlying
assumptions traditionally made while designing distributed data managers do not apply
to today’s wide-area network (WAN) environments. To date, distributed database
management systems have been designed for local-area networks (LAN’s) with few
servers operating within one administrative domain, such as one company or one
department within a company. Furthermore, these systems assume uniformity of all
processors and network connections within the system. Data movement in these systems
is a very “heavyweight” operation and is performed manually by a database
administrator. The explosive growth of distributed computing, illustrated by the World
Wide Web, dictates an entirely different set of assumptions.

Mariposa allows DBMS’s which are far apart and under different administrative
domains to work together to process queries. Furthermore, we have introduced an
economic paradigm in which processing sites buy and sell data and query processing
services. Not only does this aproach reflect the emerging reality of a commercialized
Internet, it has also allowed us to address many of the problems inherent in designing a
wide-area distributed DBMS. Mariposa has been designed with the following principles
in mind:

• Scalability to a large number of cooperating sites. In a WAN environment,
there may be a large number of sites. Our goal is to scale to 10,000 servers.

• Local autonomy. Each site must have control over its resources. This includes
which objects to store and which queries to run. Query and data allocation
cannot be done by a central, authoritarian query optimizer.

• Data mobility. It should be easy and efficient to change the “home” of an
object. Preferably, the object should remain available during movement.

• No global synchronization. Updates and schema changes should not force a
site to synchronize with all other sites. Otherwise, many common operations
will have exceptionally poor response time.

• Easily configurable policies. It should be easy for a local database
administrator to change the behavior of a Mariposa site. A Mariposa system
should respond gracefully to changes in user activity and data access patterns to
maintain low response time and high system throughput.

Mariposa User Manual v.1.0 6

1.2 Using This Manual

This manual is divided into two main parts: Section 2 contains a description of
POSTGRES, the single-site database management system distributed as part of
Mariposa. Readers who are familiar with POSTGRES may want to skim these sections
or skip over them entirely. Section 3 describes the Mariposa system itself. This manual
assumes that you have already installed Mariposa successfully on all the sites in your
system. For information on how to download and install Mariposa, see the Installation
and Setup Manual.

1.3 Overview of the Architecture

In Mariposa, all distributed DBMS issues (query optimization, data movement, name
service, etc.) are reformulated in microeconomic terms. Implementation of the
economic paradigm involves a number of entities and mechanisms. In this section, we
describe the architecture and process structure of Mariposa. We begin with an example,
pictured in Figure 1.

A company that sells widgets has offices in San Francisco, Chicago, New York and
Miami. The company’s database includes a table called WIDGETS which contains
pricing and inventory information on all the company’s widgets. The widgets are
warehoused in New York and Miami, so the company keeps half the WIDGETS table in
New York and the other half in Miami. In Mariposa, splitting a table is called
fragmentation and the pieces that make up a table are called fragments. In the
example, the WIDGETS table is fragmented into WIDGETS1 and WIDGETS2.

If the purchasing manager in the San Francisco office wanted to retrieve all the records
from the WIDGETS table, she would enter a query into a frontend application. In SQL
(Standard Query Language) she would enter “SELECT * FROM WIDGETS”. The site
where a query is entered, San Francisco in this case, is the home site. The purchasing
manager’s query is sent from the frontend application to the Mariposa program running
on the server in San Francisco. The query is passed through a parser, which checks for
syntactic correctness and performs type checking; an optimizer, which produces a
query plan that describes the order in which different steps in the plan will be executed;
and a fragmenter, which changes the plan produced by the optimizer to reflect the data
fragmentation. The final result produced by the fragmenter is the fragmented query
plan. In order to do their work, the parser, optimizer and fragmenter need information
about data types, fragment location, etc. This information is maintained by a Mariposa
name server. In the example, the name server is in the Chicago office.

The fragmented query plan describes the operations that will be performed in order to
execute the query, and the order in which they will be carried out. In the example, the
purchasing manager’s query, “SELECT * FROM WIDGETS” is represented by a query
plan which scans the two WIDGETS fragments, WIDGETS1 and WIDGETS2, and
merges the result. The fragmented query plan is passed to the query broker, whose job
it is to decide where each piece of the fragmented query plan will be executed. The query
broker uses one of two protocols:

• In the long protocol, the query broker contacts the bidder module at each
potential processing site. The broker waits for responses from the bidders before
selecting the best ones. The long protocol is illustrated in Figure 1.

Mariposa User Manual v.1.0 7

• In the short protocol, the query broker uses information collected from the
name server to decide which sites will process the query. It does not contact the
processing sites.

After the query broker has specified the processing sites, the backend’s coordinator
module takes over. The coordinator notifies the remote sites to begin processing,
collects the results, and returns the answer to the client program.

QUERY

BROKER

SELECT * FROM WIDGETS;

PARSER

OPTIMIZER

FRAGMENTER

SCAN(WIDGETS1) SCAN(WIDGETS2)

MERGE

Query

SUBMITCLEAR

SELECT * FROM WIDGETS;

COORDINATOR

SCAN(WIDGETS1)
in New York

SCAN(WIDGETS2)
in Miami

MERGE
in San Francisco

BIDDER

S
in

gl
e-

S
ite

D
B

M
S

How much?
How long?

$5, 5 minutes

Go Ahead

 1) Purchasing
Manager in San
Francisco submits
query using frontend
application.

2) Frontend passes query
to Mariposa process.

3) San Francisco site
contacts name server.

4) Fragmented query plan
is passed to query broker

5) Query broker sends
requests for bids to
processing sites in New
York and Miami.

6) Bidders at
processing sites
send back bids.7) Query Broker selects

processing sites and
passes complete plan to
coordinator. 8) Coordinator

notifies processing
sites to perform work.

9) Each processing site
passes query fragment to
local, single-site DBMS.

San Francisco

Chicago

New York

Miami

This release of Mariposa is based on the POSTGRES extended-relational database
management system. We have included a description of the version of POSTGRES
distributed with Mariposa in the next section.

Figure 1: Mariposa Architecture Example

Mariposa User Manual v.1.0 8

2. POSTGRES

The single-site database engine distributed with Mariposa is POSTGRES. The version
of POSTGRES distributed with Mariposa is a pre-alpha release of POSTGRES95. Not
all of the features of POSTGRES95 are implemented in this version. We are planning
on releasing a version of Mariposa with support for POSTGRES95 in the future. The
commands and keywords listed in Table 1 are not supported by the version of
POSTGRES released with Mariposa. We have listed equivalent commands and key
words if they exist.

Command or Key Word Description Equivalent

ASC, DESC Ascending/Descending key
words in ORDER BY clause

USING ‘<‘ for ASC

USING ‘>‘ for DESC

CAST Used to typecast constants or
parameters

‘::’ operator

COMMIT, ROLLBACK Transaction commit, rollback none

CREATE DATABASE Create a new database CREATEDB

DROP DATABASE Destroy a database DESTROYDB

DELIMITERS Denotes delimiters between fields
in COPY statement

none

GRANT, REVOKE,
PRIVILEGES, PUBLIC

Used for access control none

EXPLAIN Explain optimizer choice of
query plan

none

LIKE LIKE operator ‘~’ operator

In addition to commands and key words, the version of POSTGRES distributed with
Mariposa has different built-in types than POSTGRES95. The POSTGRES95 types and
their equivalents are listed in Table 2.

Table 1: Unsupported Commands and Key Words

Mariposa User Manual v.1.0 9

POSTGRES95 Type Mariposa POSTGRES Type

int, integer, smallint int2, int4

real, float float4, float8

char(length), varchar(length) char[length], char16

date, time abstime

The POSTGRES95 built-in aggregates avg, sum, min and max have type-specific
equivalents in the POSTGRES distributed with Mariposa. These are listed in Table 3.
The built-in aggregate count is the same in both versions.

POSTGRES95 Aggregate POSTGRES Type-Specific Equivalents

avg int4ave, int2ave, float4ave, float8ave

sum int4sum, int2sum, float4sum, float8sum

min int2min, int4min, float4min, float8min

max int2max, int4max, float4max, float8max

2.1 THE QUERY LANGUAGE, POSTGRES SQL

This section provides an overview of how to use POSTGRES SQL to perform simple
operations. POSTGRES SQL is a variant of SQL-3. It has many extensions such as an
extensible type system, inheritance, functions and production rules. These extensions
were in the original POSTGRES query language, POSTQUEL.

This manual provides an introduction to POSTGRES SQL. There are numerous books
on SQL, such as [MELT93] or [DATE93]; consult them for a more detailed analysis of
SQL. Moreover, many of the features of POSTGRES SQL are not part of the ANSI
standard.

The following examples assume that you have installed Mariposa on at least one site,
and that you have created a database. You must also have the site manager running at
the site where you are issuing queries. See the Installation and Setup Manual .

The examples in this manual can be found in src/tutorial. Refer to the
README file in that directory for detailed instructions. To start the tutorial, enter these
statements:

% cd src/tutorial
% mpsql <database name>

Table 2: POSTGRES 95 Types and their Equivalents

Table 3: POSTGRES95 Aggregates and their Equivalents

Mariposa User Manual v.1.0 10

The following message will appear:
Welcome to the Mariposa interactive sql monitor:
type \? for help on slash commands
type \q to quit
type \g or terminate with semicolon to execute query
You are currently connected to the database: <database-name>

<database-name>=> \i basics.sql

The \i command reads in queries from the specified files. The -s option starts single
step mode which pauses before sending a query to the backend. Queries in this section
are in the file basics.sql.

2.1.1 Creating a New Class

One of the fundamental concepts in POSTGRES is that of a class. A class is a named
collection of object instances. Each instance has the same collection of named attributes
of which each attribute is a specific type. Furthermore, each instance has a permanent
object identifier (OID) that is unique throughout the installation. Because SQL syntax
refers to tables, the terms “table” and “class” are used interchangeably throughout this
manual. Similarly, a row is an instance and columns are attributes.

You can create a new class by specifying the class name as well as all attribute names
and their types:

CREATE TABLE WIDGETS (
PART_NO int4,
LOCATION char16, -- warehouse: Miami or New York
ON_HAND int4, -- quantity on-hand
ON_ORDER int4, -- quantity on order
COMMITTED int4 -- quantity sold but not shipped

);

Note that keywords are case-insensitive whereas identifiers are case-sensitive.
Therefore, ‘CREATE TABLE’ could have been typed ‘create table’ or ‘Create Table’
but ‘char16’ could not have been typed any other way. POSTGRES SQL supports the
standard SQL types (with the exceptions noted in Table 2). POSTGRES is unique in
that it can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not keywords. For example, you could define a type
called ‘CHAR16’ distinct from ‘char16’ and define attributes of type ‘CHAR16’,
although this would be confusing, to say the least.

As described so far, the POSTGRES create table command is the same command
used to create a table in a traditional relational system. However, POSTGRES tables
(classes) have properties that are extensions of the relational model.

2.1.2 Populating a Class with Instances

The insert statement is used to populate a class with instances:
INSERT INTO WIDGETS
VALUES (1, ‘New York’, 500, 1500, 300);

The copy command is used to load large amounts of data from flat (ASCII) files on the
client to the POSTGRES server. For example, the command:

COPY WIDGETS FROM ‘src/tutorial/widgets.txt’;

will copy the entries in the text file ‘src/tutorial/widgets.txt’ into the WIDGETS table.

Mariposa User Manual v.1.0 11

2.1.3 Querying a Class

The WIDGETS class can be queried with normal relational selection and projection
queries. An SQL select statement is used to do this. The statement is divided into a
target list (i.e., the part that lists the attributes to be returned) and a qualification (i.e.,
the part that specifies any restrictions). For example, to retrieve all the rows of
WIDGETS, type:

SELECT * FROM WIDGETS;

and the output will be:

PART_NO LOCATION ON_HAND ON_ORDER COMMITTED

1 New York 500 1500 300

2 New York 3000 0 1000

3 Miami 10000 5000 8000

4 Miami 8500 0 200

5 New York 2500 2000 2000

3 New York 1800 200 750

2 Miami 9300 700 5000

4 New York 3200 0 0

6 New York 1800 5000 1500

6 Miami 11000 0 3000

You may specify any aribitrary expressions in the target list. For example, to list the
number of widgets on order plus the number on hand, you could type:

SELECT PART_NO, LOCATION, (ON_ORDER + ON_HAND) AS TOTAL_QTY
FROM WIDGETS;

PART_NO LOCATION TOTAL_QTY

1 New York 2000

2 New York 3000

3 Miami 15000

4 Miami 8500

5 New York 4500

3 New York 2000

2 Miami 10000

4 New York 3200

6 New York 6800

6 Miami 11000

Arbitrary Boolean operators (e.g., and, or, and not) are allowed in the qualification of
any query. For example:

SELECT *
FROM WIDGETS
WHERE location = ‘Miami’
and (ON_HAND + ON_ORDER - COMMITTED) <= 8000;

PART_NO LOCATION ON_HAND ON_ORDER COMMITTED

3 Miami 10000 5000 8000

2 Miami 9300 700 5000

6 Miami 11000 0 3000

To specify the results of a select to be returned in a sorted order use ORDER BY:

Mariposa User Manual v.1.0 12

SELECT *
FROM WIDGETS
ORDER BY LOCATION;

PART_NO LOCATION ON_HAND ON_ORDER COMMITTED

6 Miami 11000 0 3000

2 Miami 9300 700 5000

4 Miami 8500 0 200

3 Miami 10000 5000 8000

2 New York 3000 0 1000

1 New York 500 1500 300

3 New York 1800 200 750

6 New York 1800 5000 1500

5 New York 2500 2000 2000

4 New York 3200 0 0

To group records together, use GROUP BY. GROUP BY is generally used with
aggregates:

SELECT PART_NO,
int4sum(ON_HAND) as TOTAL_ON_HAND,
int4sum(ON_ORDER) as TOTAL_ON_ORDER,
int4sum(COMMITTED) as TOTAL_COMMITTED
FROM WIDGETS
GROUP BY PART_NO
ORDER BY PART_NO;

PART_NO TOTAL_ON_HAND TOTAL_ON_ORDER TOTAL_COMMITTED

1 500 1500 300

2 12300 700 6000

3 11800 5200 8750

4 11700 0 200

5 2500 2000 2000

6 12800 5000 4500

To find out more about aggregates, see Section 2.1.8.

2.1.4 Redirecting SELECT Queries

Any select query can be redirected to a new class
SELECT * INTO TABLE temp from WIDGETS;

This query implicitly creates a new class temp with the attribute names and types
specified in the target list of the SELECT INTO command. Thus, you can perform
operations on the resulting class as well as on other classes:

SELECT * FROM temp;

Mariposa User Manual v.1.0 13

PART_NO LOCATION ON_HAND ON_ORDER COMMITTED

1 New York 500 1500 300

2 New York 3000 0 1000

3 Miami 10000 5000 8000

4 Miami 8500 0 200

5 New York 2500 2000 2000

3 New York 1800 200 750

2 Miami 9300 700 5000

4 New York 3200 0 0

6 New York 1800 5000 1500

6 Miami 11000 0 3000

2.1.5 Joins Between Classes

So far this section has shown queries that access one class at a time. Queries can access
multiple classes at once, or access the same class in such a way that multiple instances
of the class are being processed at the same time. A query that accesses multiple
instances of the same or different classes at one time is called a join query.

For example, to find the widgets are on-hand in greater quantity in Miami than in New
York:

SELECT W1.PART_NO, W1.ON_HAND as MIAMI, W2.ON_HAND as NY
FROM WIDGETS W1, WIDGETS W2
WHERE W1.LOCATION = ‘Miami’ and
W2.LOCATION = ‘New York’ and
W1.PART_NO = W2.PART_NO and
W1.ON_HAND > W2.ON_HAND;

PART_NO MIAMI NY

2 9300 3000

3 10000 1800

4 8500 3200

6 1100 1800

In this case, both W1 and W2 are surrogates for an instance of the class widgets,and
both range over all instances of the class. In relational database systems, W1 and W2 are
known as “range variables.” In addition, a query can contain an arbitrary number of
class names and surrogates.1

2.1.6 Updates

To update existing instances, use the update command. For example, to reflect the
delivery into New York of the widgets with PART_NO = 1 that were on order:

UPDATE WIDGETS

1 The semantics of such a join are that the qualification is a truth expression defined for the Cartesian product of the

classes indicated in the query. For those instances in the Cartesian product for which the qualification is true,
POSTGRES computes and returns the values specified in the target list. POSTGRES SQL does not assign any
meaning to duplicate values in such expressions. This means that POSTGRES sometimes recomputes the same
target list several times—this frequently happens when Boolean expressions are connected with an or. To remove
such duplicates, you must use the SELECT DISTINCT statement.

Mariposa User Manual v.1.0 14

SET ON_HAND = ON_HAND + ON_ORDER, ON_ORDER = 0
WHERE PART_NO = 1 and
LOCATION = ‘New York’;

SELECT * FROM WIDGETS
WHERE PART_NO = 1 and
LOCATION = ‘New York’;

PART_NO LOCATION ON_HAND ON_ORDER COMMITTED

1 New York 2000 0 300

2.1.7 Deletions

Deletions are performed using the delete command:
DELETE FROM WIDGETS
WHERE ON_HAND = 0 and
ON_ORDER = 0 and
COMMITTED = 0;

All widgets with zero quantity on-hand, on-order and sold are deleted. (In this example,
there are no such records, so this DELETE statement has no effect).

Be wary of queries such as:
DELETE FROM WIDGETS;

Without a qualification, the delete command deletes all instances of the given class,
leaving it empty. The system will not request confirmation before performing this
command.

2.1.8 Using Aggregate Functions

As in most other query languages, POSTGRES supports aggregate functions. However,
in the current implementation of POSTGRES, the usage of aggregate functions is
limited. Specifically, while there are aggregates to compute such functions as the count,
sum, average, maximum and minimum over a set of instances, aggregates can only
appear in the target list of a query and not in the qualification (i.e, the where clause).
For example:

SELECT int4max(ON_HAND) as MAX_ON_HAND
FROM WIDGETS;

MAX_ON_HAND

11000

However, this query won’t be accepted by POSTGRES:
SELECT PART_NO, LOCATION, ON_HAND
FROM WIDGETS
WHERE ON_HAND = int4max(ON_HAND);

As mentioned in Section 2.1.3, aggregates are commonly used with GROUP BY clauses.

Mariposa User Manual v.1.0 15

2.2 ADVANCED POSTGRES SQL FEATURES

This section discusses those features that distinguish POSTGRES from conventional
data managers. These features include inheritance, time travel, and non-atomic data
values (i.e., array- and set-valued attributes).

Examples in this section can be found in advance.sql in the tutorial directory.
(Refer to the introduction of the previous chapter for details).

2.2.1 Inheritance

The following examples illustrate inheritance in POSTGRES. The statements below
create the class cities as well as the capitals class which contains all the state capitals.
The capitals class inherits from the cities class.

CREATE TABLE cities (
name text,
population float8,
altitude int4 -- (in ft)
);

CREATE TABLE capitals (
state char2
) INHERITS (cities);

In this case, an instance of capitals inherits all attributes (i.e., name,
population, and altitude) from its parent, cities. The type of the
attribute name is text, a built-in POSTGRES type for variable-length strings. The
type of the attribute population is float8, the POSTGRES built-in type for double-
precision floating point number. The type for the altitude attribute is int4, a
built-in POSTGRES type for regular four-byte integer numbers.

The capitals class has an extra attribute, state, which contains the capital’s
state. In POSTGRES, a class can inherit from zero or more other classes.2 In addition,
a query can reference either all instances of a class or all instances of a class plus all of
its descendants. For example, the following query finds all the cities that are situated at
an attitude of 500 feet or higher:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

name altitude

Las Vegas 2174

Mariposa 1953

On the other hand, to find the names of all cities, including state capitals, that are
located at an altitude over 500 feet, the query is:

SELECT c.name, c.altitude
FROM cities* c
WHERE c.altitude > 500;

2 I.e., the inheritance hierarchy is a directed acyclic graph.

Mariposa User Manual v.1.0 16

which returns:
name altitude

Las Vegas 2174

Mariposa 1953

Madison 845

Here the “*” after cities indicates that the query should be run over cities and all
classes below cities in the inheritance hierarchy. Many of the commands discussed
so far—select, update and delete—support this “*” notation. Other
commands, such as the alter command do as well.

2.2.2 Time Travel

POSTGRES supports time travel. This feature enables you to run historical queries. For
example, to find the current population of Mariposa city:

SELECT * FROM cities WHERE name = ‘Mariposa’;

name population altitude

Mariposa 1320 1953

POSTGRES automatically finds the version of Mariposa’s record valid at the current
time.

You can also specify a time range. For example, to retrieve the past and present
populations of Mariposa, query:

SELECT name, population
FROM cities[epoch’, ‘now’]
WHERE name = ‘Mariposa’;

Here, “epoch” indicates the beginning of the system clock.3 If all of the examples have
been executed thus far, then the above query returns:

name population

Mariposa 1200

Mariposa 1320

The default beginning of a time range is the earliest time representable by the system
and the default end is the current time; thus, the above time range can be abbreviated as
``[,].

2.2.3 Non-Atomic Values: Arrays

One of the tenets of the relational model is that the attributes of a relation are atomic.
POSTGRES does not have this restriction; attributes can contain subvalues that can be
accessed from the query language. For example, you can create attributes that are arrays
of base types.

With POSTGRES attributes of an instance can be defined as fixed-length or variable-
length multi-dimensional arrays. Arrays of any base type or user-defined type can be
created. To illustrate this, first create a class with arrays of base types.

3 On UNIX systems, this is always midnight, January 1, 1970 GMT.

Mariposa User Manual v.1.0 17

CREATE TABLE SAL_EMP (
name text,
pay_by_quarter int4[],
schedule char16[][]
);

The above query creates a class named SAL_EMP with a text string (name), a one-
dimensional array of int4 (pay_by_quarter), which represents the employee’s
salary by quarter, and a two-dimensional array of char16 (schedule), which
represents the employee’s weekly schedule.

To insert values into an array, use the INSERT statement. Note that when appending
to an array, enclose the values within braces and separate them by commas. This is not
unlike the syntax for initializing structures in C.

INSERT INTO SAL_EMP
VALUES (‘Bill’,
‘{10000, 10000, 10000, 10000}’,
‘{{”meeting”, “lunch”}, {}}’);

INSERT INTO SAL_EMP
VALUES (‘Carol’,
‘{20000, 25000, 25000, 25000}’,
‘{{”talk”, “consult”}, {”meeting”}}’);

By default, POSTGRES uses the “one-based” numbering convention for arrays—that is,
an array of n elements starts with array[1] and ends with array[n].

The following query accesses a single element of an array at a time and retrieves the
names of the employees whose pay changed in the second quarter:

SELECT name
FROM SAL_EMP
WHERE SAL_EMP.pay_by_quarter[1] <>
SAL_EMP.pay_by_quarter[2];

name

Carol

The following query retrieves the third quarter pay of all employees:
SELECT SAL_EMP.pay_by_quarter[3] FROM SAL_EMP;

You can also access arbitrary slices of an array, (subarrays). The following query
retrieves the first item on Bill’s schedule for the first two days of the week.

pay_by_quarter

10000

25000

SELECT SAL_EMP.schedule[1:2][1:1]
FROM SAL_EMP
WHERE SAL_EMP.name = ‘Bill’;

schedule

{{”meeting”},{””}}

Mariposa User Manual v.1.0 18

2.3 POSTGRES Extensibility

This section discusses how to extend the POSTGRES SQL query language by adding
functions, types, operators, and aggregates.

Standard relational systems store information about databases, tables and columns in
what are commonly known as system catalogs. (Some systems call this the “data
dictionary.”) Although the DBMS stores its internal bookkeeping within the system
catalogs, this information is typically not available to users.

One key difference between POSTGRES and standard relational systems is that
POSTGRES stores much more information in its catalogs than relational systems do—
not only information about tables and columns, but also information about its types,
functions, access methods, and so forth. These classes can be modified and extended by
the user, thereby extending the built-in capabilities of POSTGRES. By comparison,
conventional database systems can only be extended by changing hardcoded procedures
within the DBMS or by loading modules specially-written by the DBMS vendor.

POSTGRES is also unlike most other data managers in that the server can incorporate
code written by users through dynamic loading. That is, a user can specify an object
code file (e.g., a compiled .o file or shared library) which implements a new type or
function and POSTGRES will load it as required. Code written in SQL is even easier to
add to the server.

2.3.1 The POSTGRES Type System

POSTGRES types are divided into two categories: base types and composite types. Base
types are those like int4, which are implemented in a programming language such as
C. They generally correspond to what are often known as “abstract data types”.
POSTGRES can only operate on these types through methods provided by the user.
Furthermore, POSTGRES understands the behavior of such types only to the extent that
the user describes them.

Composite types are created whenever a user creates a class. WIDGETS is an example of
a composite type. POSTGRES stores all instances of these types in a file. Information
about the attributes of composite types are stored in one of the POSTGRES system
catalogs (pg_attribute) and can by queried like any other table.

POSTGRES base types are further divided into built-in types and user-defined types.
Built-in types (like int4)are those that are compiled into the system and distributed
along with the source code. User-defined types, as the names suggests, are defined by
the user. These are described in detail in Section 2.5.

2.3.2 About the POSTGRES System Catalogs

All system catalogs have names that begin with “pg_”. The following classes contain
information that may be useful to the end user. There are other system catalogs, but
there should rarely be a reason to query them directly.

Mariposa User Manual v.1.0 19

catalog name description

pg_database databases

pg_class classes

pg_attribute class attributes

pg_index secondary indices

pg_proc procedures (both C and SQL)

pg_type types (both base and complex)

pg_operator operators

pg_aggregate aggregates and aggregate functions

pg_am access methods

pg_amop access method operators

pg_amproc access method support functions

pg_opclass access method operator classes

The POSTGRES Reference Manual gives a more detailed explanation of these catalogs
and their attributes. However, Figure 3 shows the major entities and their relationships
in the system catalogs. (Attributes that do not refer to other entities are not shown unless
they are part of a primary key.)

This diagram becomes clear when you examine the catalogs’ contents and see how they
relate to each other. The main points are:

• Several of the following sections present various join queries on the system
catalogs that display information needed to extend the system. This diagram
should make these join queries (which are often three- or four-way joins) more
understandable, because the diagram shows that the attributes used in the
queries form foreign keys in other classes.

• Many different features (i.e, classes, attributes, functions, types, access
methods, etc.) are tightly integrated in this schema. A simple create command
may modify many of these catalogs.

• Types and procedures4 are central to the schema. Nearly every catalog contains
some reference to instances in one or both of these classes. For example,
POSTGRES frequently uses type signatures (e.g., of functions and operators)
to identify unique instances of other catalogs.

• There are many attributes and relationships that have obvious meanings, but
there are many that do not; for example, those that have to do with access
methods. The relationships between pg_am, pg_amop, pg_amproc,
pg_operator and pg_opclass are particularly hard to understand are in

4 This manual uses the words procedure and function more or less interchangably.

Mariposa User Manual v.1.0 20

depth (in the section on interfacing types and operators to indices) following
the discussion of basic extensions.

pg_attribute

attnum

atttypid

pg_class

oid

relam

pg_index

indrelid

indkey[8]

indproc

indpred

indexrelid

pg_type

oid

typinput

typoutput

typrelid

typreceive

typsend

pg_am

oid

amgettuple

aminsert

amdelete

amgetattr

ambeginscan

amrescan

amendscan

ammarkpos

amrestrpos

ambuild

pg_language

oid

pg_proc

oid

proname

prorettype

proargtypes[8]

prolang

pg_operator

oid

oprname

oprleft

oprright

oprresult

oprcom

oprnegate

oprlsortop

oprrsortop

oprcode

oprrest

oprjoin

pg_amop

amopid

amopclaid

amopopr

amopselect

amopnpages

pg_opclass

oid

pg_amproc

amid

amopclaid

amprocnum

amproc

attrelid

KEY:

DEPENDENT INDEPENDENT

foreign key primary key

non-oid primary key

non-key

refers to

indicates an alternate primary key
 (that is, a unique identifier that may be used to identify an object)

Figure 2: The major POSTGRES system catalogs.

Mariposa User Manual v.1.0 21

2.4 EXTENDING SQL: FUNCTIONS

An important part of defining a new type is the definition of functions that describe the
type’s behavior. While it is possible to define a new function without defining a new
type, the reverse is not true.

POSTGRES SQL provides two types of functions: query language functions (functions
written in SQL) and programming language functions (functions written in a compiled
programming language, such as C). Both query language functions and programming
language functions can take any type of variable as arguments and return any type. This
includes base types, composite types or a combination of both.

Examples in this section can be found in funcs.sql and C-code/funcs.c.

2.4.1 Query Language (SQL) Functions

Query language functions can be input by a POSTGRES user from the command line
and stored in the database. They require no programming experience aside from SQL.

2.4.1.1 SQL Functions on Base Types
 The simplest possible SQL function has no arguments and simply returns a base type, such

as int4:

CREATE FUNCTION one() RETURNS int4
AS ‘SELECT 1 as RESULT’ LANGUAGE ‘sql’;

SELECT one() AS answer;

answer

1

Notice that the function definition included a target list with the name RESULT, but the
target list of the query that invoked the function overrode the function’s target list.
Therefore, the result is labelled answer instead of one.

It’s almost as easy to define SQL functions that take base types as arguments. In the
example below, notice how arguments within the function are referred to as “$1” and
“$2”.

CREATE FUNCTION add_em(int4, int4) RETURNS int4
AS ‘SELECT $1 + $2;’ LANGUAGE ‘sql’;

SELECT add_em(1, 2) AS answer;

answer

3

2.4.1.2 SQL Functions on Composite Types

When specifying functions with arguments of composite types (such as EMP), you
must not only state which argument you want (as you did above with “$1” and “$2”)

Mariposa User Manual v.1.0 22

but also the attributes of that argument. For example, take the function
double_salary that computes what your salary would be if it were doubled.

CREATE FUNCTION double_salary(EMP) RETURNS int4
AS ‘SELECT $1.salary * 2 AS salary;’ LANGUAGE ‘sql’;

SELECT name, double_salary(EMP) AS dream
FROM EMP
WHERE EMP.dept = ‘toy’;

name dream

Sam 2400

Notice the use of the syntax “$1.salary”.

Usually you can use the notation attribute(class) and class.attribute
interchangeably.

• this is the same as:
• SELECT EMP.name AS youngster FROM EMP WHERE EMP.age < 30
SELECT name(EMP) AS youngster
FROM EMP
WHERE age(EMP) < 30;

youngster

Sam

However, this is not always the case.

Function notation is important when you want to create a function that returns a single
instance of a complex type. You do this by assembling the entire instance within the
function, attribute by attribute. This is an example of a function that returns a single
EMP instance:

CREATE FUNCTION new_emp() RETURNS EMP
AS ‘SELECT \’None\’::text AS name,
1000 AS salary,
25 AS age,
\’none\’::char16 AS dept;’
LANGUAGE ‘sql’;

In this case you have specified each of the attributes with a constant value, but any
computation or expression could have been substituted for these constants.

Defining a function like this can be tricky. Some of the more important considerations
are:

• The target list order must be exactly the same as that in which the attributes
appear in the CREATE TABLE statement (or when you execute a .* query).

• You must typecast the expressions (using ::) very carefully or you will see the
following error:

WARN::function declared to return type EMP does not retrieve
(EMP.*)

• When calling a function that returns an instance, you cannot retrieve the entire
instance. You must either project an attribute out of the instance or pass the
entire instance into another function:

Mariposa User Manual v.1.0 23

SELECT name(new_emp()) AS nobody;

nobody

None

Because the parser doesn’t understand the other (dot) syntax for projection when
combined with function calls, you should use the function syntax for projecting
attributes of function return values.

SELECT new_emp().name AS nobody;
WARN:parser: syntax error at or near “.”

Any collection of commands in the SQL query language can be packaged together and
defined as a function. The commands can include updates (i.e., insert, update and
delete) as well as select queries. However, the final command must be a select that
returns whatever is specified as the function’s return type.

CREATE FUNCTION clean_EMP () RETURNS int4
AS ‘DELETE FROM EMP WHERE EMP.salary <= 0;
SELECT 1 AS ignore_this’
LANGUAGE ‘sql’;

SELECT clean_EMP();

ignore_this

1

2.4.2 Programming Language Functions

This section describes programming language functions on base types and on
composites.

2.4.2.1 Programming Language Functions on Base Types

Internally, POSTGRES regards a base type as a “blob of memory.” User-defined
functions over a user-defined base type define the way that POSTGRES operates on the
type. That is, POSTGRES will only store and retrieve the data from disk. It will use the
user-defined functions to input, process, and output the data.

Base types can have one of three internal formats:

• pass by value, fixed-length

• pass by reference, fixed-length

• pass by reference, variable-length

By-value types can only be 1, 2 or 4 bytes in length (even if your computer supports by-
value types of other sizes). POSTGRES itself only passes integer types by value. You
should be careful to define your types so that they will be the same size (in bytes) on all
architectures. For example, the long type is dangerous because it is 4 bytes on some
machines and 8 bytes on others, whereas the int type is 4 bytes on most UNIX
machines (though not on most personal computers). A reasonable implementation of
the int4 type on UNIX machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

Mariposa User Manual v.1.0 24

On the other hand, fixed-length types of any size may be passed by-reference. For
example, here is a sample implementation of the POSTGRES char16 type:

/* 16-byte structure, passed by reference */
typedef struct {
char data[16];
} char16;

Only pointers to such types can be used when passing them in and out of POSTGRES
functions.

Finally, all variable-length types must also be passed by reference. All variable-length
types must begin with a length field of exactly 4 bytes, and all data to be stored within
that type must be located in the memory immediately following that length field. The
length field is the total length of the structure (i.e., it includes the size of the length field
itself). You can define the text type as follows:

typedef struct {
int4 length;
char data[1];
} text;

Obviously, the data field is not long enough to hold all possible strings—it’s
impossible to declare such a structure in C. When manipulating variable-length types, be
careful to allocate the correct amount of memory and initialize the length field. For
example, if you want to store 40 bytes in a text structure, you might use a code
fragment like this:

#include “postgres.h”
#include “utils/palloc.h”

...

char buffer[40]; /* our source data */
...

text *destination = (text *) palloc(VARHDRSZ + 40);
destination->length = VARHDRSZ + 40;
memmove(destination->data, buffer, 40);
...

Here are some examples of real functions. Suppose funcs.c look like:
#include <string.h>
#include “postgres.h” /* for char16, etc. */
#include “utils/palloc.h” /* for palloc */
int
add_one(int arg)
{

return(arg + 1);
}

char16 *
concat16(char16 *arg1, char16 *arg2)
{

char16 *new_c16 = (char16 *) palloc(sizeof(char16));
memset((void *) new_c16, 0, sizeof(char16));
(void) strncpy(new_c16, arg1, 16);
return (char16 *)(strncat(new_c16, arg2, 16));

}

Mariposa User Manual v.1.0 25

text *
copytext(text *t)
{

/*
 * VARSIZE is the total size of the struct in bytes.
 */

text *new_t = (text *) palloc(VARSIZE(t));
memset(new_t, 0, VARSIZE(t));
VARSIZE(new_t) = VARSIZE(t);
/*

 * VARDATA is a pointer to the data region of the struct.
 */

memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(t), /* source */
VARSIZE(t)-VARHDRSZ); /* how many bytes */
return(new_t);

}

On OSF/1 you type:
CREATE FUNCTION add_one(int4) RETURNS int4
AS ‘/usr/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE
‘c’;
CREATE FUNCTION concat16(char16, char16) RETURNS char16
AS ‘/usr/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE
‘c’;
CREATE FUNCTION copytext(text) RETURNS text
AS ‘/usr/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE
‘c’;

On other systems, you might have to make the filename end in .sl to indicate that it’s
a shared library.

2.4.2.2 Programming Language Functions on Composite Types

Composite types do not have a fixed layout like C structures. Instances of a composite
type may contain null fields. Also, composite types that are part of an inheritance
hierarchy may have different fields than other members of the same inheritance
hierarchy. Therefore, POSTGRES provides a procedural interface for accessing fields of
composite types from C.

As POSTGRES processes a set of instances, each instance will be passed into your
function as an opaque structure of type TUPLE.

Suppose you want to write a function to answer the query
SELECT name, c_overpaid(EMP, 1500) AS overpaid
FROM EMP
WHERE name = ‘Bill’ or name = ‘Sam’

In the query above, you can define c_overpaid as:
#include “postgres.h” /* for char16, etc. */
#include “libpq-fe.h” /* for TUPLE */
bool
c_overpaid(TUPLE t, /* the current instance of EMP */
int4 limit)
{

bool isnull = false;
int4 salary;

Mariposa User Manual v.1.0 26

salary = (int4) GetAttributeByName(t, “salary”, &isnull);
if (isnull)

return (false);
return(salary > limit);

}

GetAttributeByName is the POSTGRES system function that returns attributes out
of the current instance. It has three arguments: the argument of type TUPLE passed into
the function, the name of the desired attribute, and a return parameter that describes
whether the attribute is null. GetAttributeByName will align data properly so you
can cast its return value to the desired type. For example, if you have an attribute name
which is of the type char16, the GetAttributeByName call would look like:

char *str;
...
str = (char *) GetAttributeByName(t, “name”, &isnull)

The following query lets POSTGRES know about the c_overpaid function:
CREATE FUNCTION c_overpaid(EMP, int4) RETURNS bool
AS ‘/usr/local/postgres95/tutorial/obj/funcs.so’ LANGUAGE
‘c’;

While there are ways to construct new instances or modify existing instances from
within a C function, these are far too complex to discuss in this manual.

2.4.2.3 Caveats

This section discusses the more difficult task of writing programming language
functions. Be warned: this section of the manual will not make you a programmer. You
must have a good understanding of C (including the use of pointers and the malloc
memory manager) before trying to write C functions for use with POSTGRES.

While it may be possible to load functions written in languages other than C into
POSTGRES, this is often difficult (when it is possible at all) because other languages,
such as FORTRAN and Pascal often do not follow the same calling convention as C.
That is, other languages do not pass argument and return values between functions in
the same way. For this reason, this discussion assumes that your programming language
functions are written in C.

The basic rules for building C functions are as follows:

• Most of the header (include) files for POSTGRES should already be installed in
/usr/local/mariposa/include. You should always include
I/usr/local/mariposa/include on your cc command lines.
Sometimes, you may find that you require header files that are in the server
source itself. In those cases you may need to add one or more of

 I/usr/local/postgres95/src/backend
 I/usr/local/postgres95/src/backend/include
 I/usr/local/postgres95/src/backend/port/<PORTNAME>
 I/usr/local/postgres95/src/backend/obj

 (where <PORTNAME> is the name of the port, e.g., alpha or sparc).

• When allocating memory, use the POSTGRES routines palloc and pfree instead
of the corresponding C library routines malloc and free. The memory allocated
by palloc will be freed automatically at the end of each transaction, preventing
memory leaks.

Mariposa User Manual v.1.0 27

• Always zero the bytes of your structures using memset or bzero. Several
routines (such as the hash access method, hash join and the sort algorithm)
compute functions of the raw bits contained in your structure. Even if you
initialize all fields of your structure, there may be several bytes of alignment
padding (holes in the structure) that may contain garbage values.

• Most of the internal POSTGRES types are declared in postgres.h, so it’s usually
a good idea to include that file as well.

• Compiling and loading your object code so that it can be dynamically loaded
into POSTGRES always requires special flags. See Appendix A for a detailed
explanation of how to do it for your particular operating system.

2.5 EXTENDING SQL: TYPES

As previously mentioned, there are two kinds of types in POSTGRES: base types
(defined in a programming language) and composite types (instances).

Examples in this section up to interfacing indices can be found in complex.sql and
complex.c. Composite examples are in funcs.sql.

2.5.1 Functions Needed for a User-Defined Type

A user-defined type must always have input and output functions. These functions
determine how the type appears in strings (for input by the user and output to the user)
and how the type is organized in memory. The input function takes a null-delimited
character string as its input and returns the internal (in memory) representation of the
type. The output function takes the internal representation of the type and returns a null-
delimited character string.

Suppose you want to define a complex type which represents complex numbers.
Naturally, you can represent a complex in memory as the following C structure:

typedef struct Complex {
double x;
double y;
} Complex; and a string of the form “(x,y)” as the external
string representation.

These functions are usually not hard to write, especially the output function. However,
there are a number of points to remember.

• When defining your external (string) representation, remember that you must
eventually write a complete and robust parser for that representation as your
input function!

Complex *
complex_in(char *str)
{

double x, y;
Complex *result;

if (sscanf(str, “ (%lf , %lf)”, &x, &y) != 2) {
elog(WARN, “complex_in: error in parsing
return NULL;

}

Mariposa User Manual v.1.0 28

result = (Complex *)palloc(sizeof(Complex));
result->x = x;
result->y = y;
return (result);

}

 The output function can simply be:

char *
complex_out(Complex *complex)
{

char *result;
if (complex == NULL)

return(NULL);

result = (char *) palloc(60);
sprintf(result, “(%g,%g)”, complex->x, complex->y);
return(result);

}

• Try to make the input and output functions inverses of each other. If you do
not, you will have severe problems when you need to dump your data into a file
and then read it back in (say, into someone else’s database on another
computer). This is a particularly common problem when floating-point
numbers are involved.

To define the complex type, you need to create the two user-defined functions
complex_in and complex_out before creating the type:

CREATE FUNCTION complex_in(opaque)
RETURNS complex
AS ‘/usr/local/postgres95/tutorial/obj/complex.so’
LANGUAGE ‘c’;

CREATE FUNCTION complex_out(opaque)
RETURNS opaque
AS ‘/usr/local/postgres95/tutorial/obj/complex.so’
LANGUAGE ‘c’;

CREATE TYPE complex (
internallength = 16,
input = complex_in,
output = complex_out
);

As discussed earlier, POSTGRES fully supports arrays of base types. Additionally,
POSTGRES supports arrays of user-defined types as well. When you define a type,
POSTGRES automatically provides support for arrays of that type. For historical
reasons, the array type has the same name as the user-defined type with the underscore
character ‘_’ prepended to it.

Composite types do not need any function defined on them, since the system already
understands what they look like inside.

Mariposa User Manual v.1.0 29

A Note About Large Objects: The types discussed to this point are all “small”
objects—that is, they are smaller than 8KB5 in size. If you require a larger type for
something like a document retrieval system or for storing bitmaps, you will need to use
the POSTGRES large object interface.

2.6 EXTENDING SQL: OPERATORS

POSTGRES supports left unary, right unary and binary operators. Operators can be
overloaded, or reused, with different numbers and types of arguments. If there is an
ambiguous situation and the system cannot determine the correct operator to use, it will
return an error and you may have to typecast the left and/or right operands to help it
understand which operator you meant to use.

The following example shows how to create an operator for adding two complex
numbers. First you need to create a function to add the new types. Then, you can create
the operator with the function.

CREATE FUNCTION complex_add(complex, complex)
RETURNS complex
AS ‘$PWD/obj/complex.so’
LANGUAGE ‘c’;

CREATE OPERATOR + (
leftarg = complex,
rightarg = complex,
procedure = complex_add,
commutator = +
);

To create unary operators, just omit one of leftarg (for left unary) or rightarg (for
right unary) from the binary operator example. Comparison operators, such as ‘<‘, ‘>‘
and ‘=‘ are defined the same as other binary operators. The type returned by a
comparison operator must be boolean (TRUE or FALSE). All of the POSTGRES
operators are defined in this way; a function definition and an operator based on the
function. For example, the ‘=‘ operator is defined for int4 using a built-in function
int4eq, for char16 using char16eq, for float8 using float8eq, and so on.

If you give the system enough type information, it can automatically figure out which
operators to use.

SELECT (a + b) AS c FROM test_complex;

c

(5.2,6.05)

(133.42,144.95)

2.7 EXTENDING SQL: AGGREGATES

Aggregates in POSTGRES are expressed in terms of state transition functions. That is,
an aggregate can be defined in terms of state that is modified whenever an instance is

5 8 * 1024 = 8192 bytes. In fact, the type must be considerably smaller than 8192 bytes, since the POSTGRES tuple

and page overhead must also fit into this 8KB limitation. The actual value that fits depends on the machine
architecture.

Mariposa User Manual v.1.0 30

processed. Some state functions look at a particular value in the instance when
computing the new state (sfunc1 in the create aggregate syntax) while others only keep
track of their own internal state (sfunc2).

If you define an aggregate that uses only sfunc1, you are defining an aggregate that
computes a running function of the attribute values from each instance. “Sum” is an
example of this kind of aggregate. “Sum” starts at zero and always adds the current
instance’s value to its running total. The following example uses the int4pl that is
built into POSTGRES to perform this addition.

CREATE AGGREGATE complex_sum (
sfunc1 = complex_add,
basetype = complex,
stype1 = complex,
initcond1 = ‘(0,0)’
);

SELECT complex_sum(a) FROM test_complex;

complex_sum

(34,53.9)

If you define only sfunc2,you are specifying an aggregate that computes a running
function that is independent of the attribute values from each instance. “Count” is the
most common example of this kind of aggregate. “Count” starts at zero and adds one to
its running total for each instance, ignoring the instance value. Here, you can use the
built-in int4inc routine to do the work for you. This routine increments (adds one to)
its argument.

CREATE AGGREGATE my_count (sfunc2 = int4inc, -- add one
basetype = int4, stype2 = int4,
initcond2 = ‘0’);

SELECT my_count(*) as emp_count from EMP;

emp_count

5

“Average” is an example of an aggregate that requires both a function to compute the
running sum and a function to compute the running count. When all of the instances
have been processed, the final answer for the aggregate is the running sum divided by
the running count. You can use the int4pl and int4inc routines you used
previously as well as the POSTGRES integer division routine, int4div, to compute
the division of the sum by the count.

CREATE AGGREGATE my_average (sfunc1 = int4pl, -- sum
basetype = int4,
stype1 = int4,
sfunc2 = int4inc, -- count
stype2 = int4,
finalfunc = int4div, -- division
initcond1 = ‘0’,
initcond2 = ‘0’);

SELECT my_average(salary) as emp_average FROM EMP;

Mariposa User Manual v.1.0 31

emp_average

1640

2.8 INTERFACING EXTENSIONS TO INDICES

The procedures described to this point enable you to define a new type, new functions,
and new operators. However, you have not yet seen how to define a secondary index
(such as a B-tree, R-tree or hash access method) over a new type or its operators.

Look back at Figure 2. The right half shows the catalogs that you must modify in order
to tell POSTGRES how to use a user-defined type and/or user-defined operators with an
index (i.e., pg_am, pg_amop, pg_amproc and pg_opclass).
Unfortunately, there is no simple command to do this. This section demonstrates how to
modify these catalogs through a running example: a new operator class for the B-tree
access method that sorts integers in ascending absolute value order.

The pg_am class contains one instance for every user- defined access method. Support
for the heap access method is built into POSTGRES, but every other access method is
described here. The schema is described in Table 4.

amname name of the access method

amowner object id of the owner’s instance in pg_user

amkind not used at present, but set to ‘o’ as a place
holder

amstrategies number of strategies for this access method
(see below)

amsupport number of support routines for this access
method (see below)

amgettuple , aminsert, ... procedure identifiers for interface routines to
the access method. For example, regproc
IDs for opening, closing, and getting
instances from the access method appear
here.

The object ID of the instance in pg_am is used as a foreign key in lots of other classes.
You don’t need to add a new instance to this class; all you’re interested in is the object
ID of the access method instance you want to extend:

SELECT oid FROM pg_am WHERE amname = ‘btree’

oid

403

The amstrategies attribute standardizes comparisons across data types. For
example, B-trees impose a strict ordering on keys, lesser to greater. Because
POSTGRES allows the user to define operators, POSTGRES cannot look at the name of

Table 4: pg_am schema

Mariposa User Manual v.1.0 32

an operator (e.g., > or <) and tell what kind of comparison it is. In fact, some access
methods don’t impose any ordering at all. For example, R-trees express a rectangle-
containment relationship, whereas a hashed data structure expresses only bitwise
similarity based on the value of a hash function. POSTGRES needs some consistent way
of taking a qualification in your query, looking at the operator, and then deciding if a
usable index exists. This implies that POSTGRES needs to know, for example, that the
<= and > operators partition a B-tree. POSTGRES uses strategies to express these
relationships between operators and the way they can be used to scan indices.

Defining a new set of strategies is beyond the scope of this discussion, but we’ll explain
how B-tree strategies work because you’ll need to know that to add a new operator class.
In the pg_am class, the amstrategies attribute is the number of strategies defined
for this access method. For B-trees, this number is 5. These strategies correspond to

less than 1

less than or equal 2

equal 3

greater than or equal 4

greater than 5

The idea is that you’ll need to add procedures corresponding to the comparisons above
to the pg_amop relation (see below). The access method code can use these strategy
numbers, regardless of data type, to figure out how to partition the B-tree, compute
selectivity, and so on. Don’t worry about the details of adding procedures yet; just
understand that there must be a set of these procedures for int2, int4, oid, and
every other data type on which a B-tree can operate.

Sometimes, strategies aren’t enough information for the system to figure out how to use
an index. Some access methods require other support routines in order to work. For
example, the B-tree access method must be able to compare two keys and determine
whether one is greater than, equal to, or less than the other. Similarly, the R-tree access
method must be able to compute intersections, unions, and sizes of rectangles. These
operations do not correspond to user qualifications in SQL queries; they are
administrative routines used internally by the access methods.

In order to manage diverse support routines consistently across all POSTGRES access
methods, pg_am includes an attribute called amsupport. This attribute records the
number of support routines used by an access method. For B-trees, this number is one—
the routine to take two keys and return -1, 0, or +1, depending on whether the first key
is less than, equal to, or greater than the second.6

The amstrategies entry in pg_am is just the number of strategies defined for the
access method in question. The procedures for less than, less equal, and so on don’t
appear in pg_am. Similarly, amsupport is just the number of support routines
required by the access method. The actual routines are listed elsewhere.

The next class of interest is pg_opclass. This class exists only to associate a name
with an OID. In pg_amop, every B-tree operator class has a set of procedures, one
through five, above. Some existing opclasses are int2_ops, int4_ops, and
oid_ops. You need to add an instance with your opclass name (for example,
complex_abs_ops) to pg_opclass. The OID of this instance is a foreign key in
other classes.

6 Strictly speaking, this routine can return a negative number or a non-zero positive number.

Mariposa User Manual v.1.0 33

INSERT INTO pg_opclass (opcname) VALUES (‘complex_abs_ops’);

SELECT oid, opcname
FROM pg_opclass
WHERE opcname = ‘complex_abs_ops’;

oid opcname

17314 complex_abs_ops

Note that the OID for your pg_opclass instance will be different! You should
substitute your value for 17314 wherever it appears in this discussion.

So now you have an access method and an operator class. But you still need a set of
operators; the procedure for defining operators was discussed earlier in this manual. For
the complex_abs_ops operator class on B-trees, the required operators are:

• absolute value

• less-than absolute value

• less-than-or-equal absolute value

• equal absolute value

• greater-than-or-equal absolute value

• greater-than

Suppose the code that implements the functions defined is stored in the file
/usr/local/mariposa/src/tutorial/complex.c

Part of the code look like this: (note that you will only show the equality operator for the
rest of the examples. The other four operators are very similar. Refer to complex.c
or complex.sql for the details.)

#define Mag(c) (c->x*c->x + c->y*c->y)
bool
complex_abs_eq(Complex *a, Complex *b)
{
double amag = Mag(a), bmag = Mag(b);

return (amag==bmag);
}

There are a couple of important things that are happening below.

First, note that operators for less-than, less-than-or-equal, equal, greater-than-or-equal,
and greater-than for int4 are being defined. All of these operators are already defined
for int4 under the names <, <=, =, >=, and >. The new operators behave
differently, of course. In order to guarantee that POSTGRES uses these new operators
rather than the old ones, they need to be named differently from the old ones. This is a
key point: you can overload operators in POSTGRES, but only if the operator isn’t
already defined for the argument types. That is, if you have < defined for int4,
(int4), you can’t define it again. POSTGRES does not check this when you define
your operator, so be careful. To avoid this problem, odd names will be used for the
operators. If you get this wrong, the access methods are likely to crash when you try to
do scans.

Mariposa User Manual v.1.0 34

The other important point is that all the operator functions return Boolean values. The
access methods rely on this fact. (On the other hand, the support function returns
whatever the particular access method expects—in this case, a signed integer.)

The final routine in the file is the “support routine” mentioned when you discussed the
amsupport attribute of the pg_am class. You will use this later on. For now, ignore it.

CREATE FUNCTION complex_abs_eq(complex, complex)
RETURNS bool
AS ‘/usr/local/mariposa/tutorial/obj/complex.so’
LANGUAGE ‘c’;

Now define the operators that use them. As noted, the operator names must be unique
among all operators that take two int4 operands. In order to see if the operator names
listed below are taken, you can do a query on pg_operator:

/*
 * this query uses the regular expression operator (~)
 * to find three-character operator names that end in
 * the character &
 */
SELECT *
FROM pg_operator
WHERE oprname ~ ‘^..&$’::text;

to see if your name is taken for the types you want. The important things here are the
procedure (which are the C functions defined above) and the restriction and join
selectivity functions. You should use just the ones used below—note that there are
different functions for the less-than, equal, and greater-than cases. These must be
supplied, or the access method will crash when it tries to use the operator. You should
copy the names for restrict and join, but use the procedure names you defined
in the last step.

CREATE OPERATOR = (
leftarg = complex,
rightarg = complex,
procedure = complex_abs_eq,
restrict = eqsel,
join = eqjoinsel
)

Notice that five operators corresponding to less, less equal, equal, greater, and greater
equal are defined.

The final step is to update the pg_amop relation. To do this, you need the following
attributes:

amopid the OID of the pg_am instance for B-tree
(== 403, see above)

amopclaid the OID of the pg_opclass instance for
int4_abs_ops (== whatever you got instead
of 17314, see above)

amopopr the oids of the operators for the opclass
(which we’ll get in just a minute)

amopselect,
amopnpages

cost functions

 The cost functions are used by the query optimizer to decide whether or not to use a
given index in a scan. Fortunately, these already exist—btreesel, which estimates

Mariposa User Manual v.1.0 35

the selectivity of the B-tree, and btreenpage, which estimates the number of pages a
search will touch in the tree.

You need the OIDS of the operators you just defined. To find them, look up the names
of all the operators that take two int4s, and pick yours out:

SELECT o.oid AS opoid, o.oprname
INTO TABLE complex_ops_tmp
FROM pg_operator o, pg_type t
WHERE o.oprleft = t.oid and o.oprright = t.oid
and t.typname = ‘complex’;

which returns:
oid oprname

17321 <

17322 <=

17323 =

17324 >=

17325 >

(Again, some of your OID numbers will almost certainly be different.) In this example,
the operators you are interested in are those with OIDS 17321 through 17325. (The
values you actually get will probably be different, and you should substitute them for the
values below.) Look at the operator names and pick out the ones you just added.

Now you’re ready to update pg_amop with our new operator class. The operators
should be ordered, from less than through greater than, in pg_amop. Add the required
instances:

INSERT INTO pg_amop (amopid, amopclaid, amopopr,
amopstrategy,
amopselect, amopnpages)
SELECT am.oid, opcl.oid, c.opoid, 3,
‘btreesel’::regproc, ‘btreenpage’::regproc
FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = ‘btree’ and opcname = ‘complex_abs_ops’
and c.oprname = ‘=’;

Note the order: “less than” is 1, “less than or equal” is 2, “equal” is 3, “greater than or
equal” is 4, and “greater than” is 5.

The last step is registration of the support routine previously described in our discussion
of pg_am. The OID of this support routine is stored in the pg_amproc class, keyed
by the access method oid and the operator class oid. First, you need to register the
function in POSTGRES (recall that you put the C code that implements this routine in
the bottom of the file where you implemented the operator routines):

CREATE FUNCTION int4_abs_cmp(int4, int4)
RETURNS int4
AS ‘/usr/local/postgres95/tutorial/obj/complex.so’
LANGUAGE ‘c’;

SELECT oid, proname FROM pg_proc WHERE prname =
‘int4_abs_cmp’;

oid proname

17328 int4_abs_cmp

Mariposa User Manual v.1.0 36

(Again, your OID number will probably be different and you should substitute the value
you see for the value below.) Recalling that the B-tree instance’s OID is 403 and that of
int4_abs_ops is 17314, you can add the new instance as follows:

INSERT INTO pg_amproc (amid, amopclaid, amproc, amprocnum)
VALUES (‘403’::oid, -- btree oid
 ‘17314’::oid, -- pg_opclass tuple
 ‘17328’::oid, -- new pg_proc oid
 ‘1’::int2);

2.9 THE POSTGRES RULE SYSTEM

Production rule systems are conceptually simple, but there are many subtle points
involved in actually using them. Consequently, this guide does explain the actual syntax
and operation of the POSTGRES rule system here. Instead, you should read [STON90b]
to understand some of these points and the theoretical foundations of the POSTGRES
rule system before trying to use rules. The discussion in this section is intended to
provide an overview of the POSTGRES rule system and point you to helpful references
and examples.

The “query rewrite” rule system modifies queries to take rules into consideration, and
then passes the modified query to the query optimizer for execution. It is very powerful,
and can be used for many things such as query language procedures, views, and
versions. The power of this rule system is discussed in [ONG90] as well as [STON90b].

Mariposa User Manual v.1.0 37

3. MARIPOSA

This section introduces the Mariposa architecture in more detail and extends the
examples from Section 2.1 to include distribution. We show how to split a Mariposa
class into fragments and how to move data manually from one site to another. We show
how Mariposa processes queries over remote data using information from the name
server.

3.1 Mariposa Modules

Mariposa consists of the following cooperating processes:

1. A single site manager daemon, which supervises the backends

2. One or more backend database server processes

3. A client frontend process.

Users who are familiar with POSTGRES will recognize similarities between the site
manager and backend processes and the postmaster and postgres processes on which
they were based.

Referring back to Section 1.3 we briefly summarize the example illustrated in Figure 1.
The client program issues queries to the Mariposa system. Queries are expressed in a
version of Standard Query Language. See Section 2.1 for a description of SQL used
with POSTGRES, the single-site database supplied with Mariposa. The query is passed
into an available backend by the site manager. Inside the backend, the query is passed
through a parser and then through an optimizer, which creates a query plan. The
query plan describes what operations will be performed to process the query, and in
what order. The optimizer used in Mariposa is a single-site optimizer. It produces a
plan as if all the data resided at a single site. The single-site plan is then passed to the
backend’s fragmenter module. The fragmenter produces a fragmented query plan
which reflects the fragmentation of the tables referenced in the query and is
“parallelizable” to a greater or lesser degree. The fragmenter is described in Section
3.3. The parser, optimizer and fragmenter use information from a name server module,
running at the same or a different site.

The fragmenter passes the fragmented plan to the backend’s query broker. The query
broker is explained in detail in Section Error! Reference source not found.. A
Mariposa user allocates a budget to each query. The goal of the query broker is to select
sites to process the query within the allotted budget. The query broker decides which
Mariposa site will process each node in the query plan by following one of two
protocols:

• In the long protocol, the query broker contacts the site manager’s bidder
module at each potential processing site. The broker waits for responses from
the bidders before selecting the best ones.

Mariposa User Manual v.1.0 38

• In the short protocol, the query broker uses information collected from the
name server to select the processing sites, thereby avoiding the cost of
contacting many remote sites.

After the query broker has specified the processing sites, the backend’s coordinator
module takes over, notifying the remote sites to begin processing, collecting the results,
and returning the answer to the client program.

Each Mariposa server site contains a bidder module, which is part of the site manager
process. The bidder, explained in Section Error! Reference source not found.,
responds to requests for bids from the query broker. When a bidder receives a request to
bid on part of a query, it may either refuse to bid, or return a bid to the query broker.
The bid includes the price to perform the work, and a time bound within which the work
must be completed. If a bidder bids, then it must process the query if it is chosen by the
query broker to do so.

Winning bids must sooner or later be processed. To execute these queries, the site
manager allocates an idle backend to it. The number of backends controls the
multiprocessing level at each site, and may be adjusted as conditions warrant. The local
backend sends the results of the subquery to the site executing the next part of the query
or back to the coordinator process.

Each Mariposa server site also includes a data broker. The data broker was not
mentioned in the example in Section 1.3. The data broker is called after each query is
run, whether the query originated at a remote site or locally. Based on data access
patterns and space considerations, it engages in buying and selling fragments with data
brokers at other Mariposa sites. See Section 3.5.

The behavior of the bidder and data broker processes are controlled through use of the
Tcl scripting language. Using Tcl, it is straightforward to change policy decisions; one
simply modifies the rules and scripts by which these modules are implemented.

Note: We have not included an explanation of Tcl. Readers unfamiliar with Tcl can
refer to one of the books on the subject (such as An Introduction to the Tcl and Tk
Toolkit by John Ousterhout, Addison-Wesley 1994) or to the comp.lang.tcl
USENET newsgroup.

3.2 A Distributed Example

 The source for all of the examples in this section can be found in
‘src/tutorial/dist.sql’ . This section assumes that you have installed
Mariposa on at least two sites. For instructions on setting up Mariposa, refer to the
Installation and Setup Guide . In this section:

• We assume that you have a site manager process running at the two sites
referred to as numbers 1 and 2 in the examples.

• We assume that Site 1 is a name server and has subscribed to the metadata for
Site 2 using the SUBSCRIBE METADATA command. See Section 3.4 and the
Installation and Setup Guide.

• In the example, data is moved from one site to another and then queried
immediately, so the update interval for the SUBSCRIBE METADATA

Mariposa User Manual v.1.0 39

statement should be relatively short, for example 60 seconds. See Section 3.4.1
for an explanation of SUBSCRIBE METADATA.

• Site 1 is the home site, where we are issuing queries. Site 2 is a remote site, in
this case, Miami.

3.2.1 Creating a Mariposa Class

In Mariposa, classes are created at a site just as in a single-site database. However, the
CREATE TABLE command in Mariposa has been extended. In Mariposa, a user can
specify how the table is to be partitioned, should the table ever be split into fragments.
Note that when a table is split, it is always split into two fragments. Each of the
resulting fragments can be split again, and so on. There are four ways to partition a
table in Mariposa, shown in Table 5.

Partition

Mode

Explanation

Random Records are placed in one fragment or the other at
random.

Round-Robin Half the records are placed in one fragment, half
in the other.

Key-Based The records are partitioned by value based on one
of the attributes of the class and a split value,
supplied by the user.

Hash-Based The records are partitioned by the comparing the
result of a function over one of the attributes to
a value. The function, the attribute and the split
value are all supplied by the user.

Table 5: Mariposa Partitioning Strategies

The SQL CREATE TABLE statement has been extended in Mariposa to include a
PARTITION clause. The syntax for the PARTITION clause for the four partitioning
modes is in Table 6.

Partition

Mode

PARTITION Clause Syntax

Random RANDOM

Round-Robin RONDROBIN

Key-Based PARTITION ON <attribute> USING < function>

Hash-Based PARTITION ON < function> (<attribute>)

The syntax for key-based and hash-based partitioning requires some explanation. The
<attribute> is one of the columns in the table. <function> is a function that takes two
arguments and returns -1, 0 or +1 depending on whether the first argument is less than,
equal to, or greater than the second. In general, the comparison function is an access
method comparison function, as described in Section 2.8. All the tuples in which
<attribute> is less than or equal to the split value go in the first fragment. All tuples in
which <attribute> is greater than the split value go in the second fragment.

Table 6: PARTITION Clause Syntax

Mariposa User Manual v.1.0 40

The widgets in the example in Section 2.1.1 were kept in two warehouses: Miami and
New York. We will keep the records for widgets in the location where they are stored,
so we will split using key-based partitioning on the LOCATION attribute. We create
the WIDGETS class with the following SQL statement:

CREATE TABLE WIDGETS (
PART_NO int4,
LOCATION char16, -- warehouse: Miami or New York
ON_HAND int4, -- quantity on-hand
ON_ORDER int4, -- quantity on order
COMMITTED int4 -- quantity sold but not shipped

) PARTITION ON LOCATION USING btchar16cmp;

The function btchar16cmp takes two arguments of type char16 and returns -1, 0 or
+1, as described above. In general, for key- and hash-based partitioning, the b-tree
comparison functions work. They are named analogously to btchar16cmp: substitute
the appropriate type in place of char16.

3.2.2 Splitting a Class into Fragments

Now that we have created the WIDGETS class with the proper partitioning mode, the
class can be populated just as in Section 2.1.2 with the INSERT statement:

INSERT INTO WIDGETS
VALUES (1, ‘New York’, 500, 1500, 300);

Or with the COPY command:
COPY WIDGETS FROM ‘src/tutorial/widgets.txt’;

Now we can split the table into two fragments using the SPLIT FRAGMENT statement:
SPLIT FRAGMENT WIDGETS
INTO WIDGETS_MI, WIDGETS_NY
AT ‘Miami’;

The SPLIT FRAGMENT statement creates two new relations which together make up
the original relation. Using key-based partitioning, all the tuples in which LOCATION
<= ‘Miami’ go in WIDGETS_MI. All the tuples in which LOCATION > ‘Miami’ go in
WIDGETS_NY. This effectively splits the tuples so that the Miami tuples go in
WIDGETS_MI and the New York tuples go in WIDGETS_NY. The original relation
can be queried like before:

SELECT * FROM WIDGETS;

Mariposa User Manual v.1.0 41

PART_NO LOCATION ON_HAND ON_ORDER COMMITTED

1 New York 500 1500 300

2 New York 3000 0 1000

3 Miami 10000 5000 8000

4 Miami 8500 0 200

5 New York 2500 2000 2000

3 New York 1800 200 750

2 Miami 9300 700 5000

4 New York 3200 0 0

6 New York 1800 5000 1500

6 Miami 11000 0 3000

Each fragment can also be queried individually:
SELECT * FROM WIDGETS_MI;

PART_NO LOCATION ON_HAND ON_ORDER COMMITTED

3 Miami 10000 5000 8000

4 Miami 8500 0 200

2 Miami 9300 700 5000

6 Miami 11000 0 3000

SELECT * FROM WIDGETS_NY;

PART_NO LOCATION ON_HAND ON_ORDER COMMITTED

1 New York 500 1500 300

2 New York 3000 0 1000

5 New York 2500 2000 2000

3 New York 1800 200 750

4 New York 3200 0 0

6 New York 1800 5000 1500

Alternatively, to create the two fragments WIDGETS_MI and WIDGETS_NY and
populate them with the appropriate tuples, we could have created the WIDGETS table
and split it without populating it first. Then we could have inserted tuples into the
fragments, putting the New York tuples in WIDGETS_NY and the Miami tuples in
WIDGETS_MI.

3.2.3 Moving Fragments

Now, suppose we want to move the WIDGETS_MI fragment to Miami. Say the
Mariposa server running in Miami has a hostid of 2. (For an explanation of hostid’s,
see the Installation and Setup Guide). We use the MOVE FRAGMENT command to
move WIDGETS_MI to hostid 2:

MOVE FRAGMENT WIDGETS_MI to 2;

After the fragment has been moved, we can still query the WIDGETS class, as before:
SELECT * FROM WIDGETS;

Mariposa User Manual v.1.0 42

PART_NO LOCATION ON_HAND ON_ORDER COMMITTED

1 New York 500 1500 300

2 New York 3000 0 1000

3 Miami 10000 5000 8000

4 Miami 8500 0 200

5 New York 2500 2000 2000

3 New York 1800 200 750

2 Miami 9300 700 5000

4 New York 3200 0 0

6 New York 1800 5000 1500

6 Miami 11000 0 3000

If the query SELECT * FROM WIDGETS only retrieves the New York tuples, the name
server (in this case, Site 1) hasn’t received the metadata from Site 2. If you have set up
Site 1 as the name server, as indicated at the beginning of this section, wait until the
update interval has passed and issue the query again.

3.2.4 Copying a Fragment

Now, suppose that we want to make a read-only copy of the WIDGETS_MI fragment so
that we can query it without the latency of network traffic. We can make a read-only
copy by issuing the COPY FRAGMENT command:

COPY FRAGMENT READONLY WIDGETS_MI
FROM 2 UPDATE EVERY 3600;

This command causes a read-only copy of WIDGETS_MI to be brought from Site 2 to
Site 1 (the home site). Furthermore, updates from Site 2 will be brought over and
applied every hour (3600 seconds). This means that the copy of WIDGETS_MI at Site 1
is up to an hour out of date. If Site 2 generated writes frequently and users at Site 1
required more accurate information a smaller update interval might have been
appropriate.

The next two sections describe the Mariposa replica system and name service in more
detail. Section 3.5 describes the Mariposa Data Broker. Section 0 explains distributed
query processing in Mariposa in more detail.

3.3 THE MARIPOSA REPLICA SYSTEM

Mariposa permits the replication of data fragments. In the current implementation, a
replica is created from one other replica, which we will refer to as its parent. Replicas
created from a parent are called its children. Each replica periodically receives updates
from its parent. This allows Mariposa to use one replica in the place of another,
improving availability during host crashes and network failures, and improving
performance.

There are two types of Mariposa replicas: A read-only replica receives all updates from
its parent but cannot process updates; A read-write replica propagates its updates to its
children, as well as receiving updates from its parent, if it has one. We use the term
update to mean any tuple insertion, deletion, or modification.

Mariposa User Manual v.1.0 43

Updates are sent from a parent to a child in an update stream. Update streams are
initiated by the site manager of the parent site at regular intervals. The update interval is
specified at the time a copy is created.

There are two update streams for read-write replicas: one from parent to child, and one
from child to parent. Read-only replicas only receive update streams from their parents.

3.3.1 Creating a Copy

To create a copy of a fragment in the Mariposa system, use the COPY FRAGMENT
command at the site requesting a copy (the child site). The site that owns the copy will
be referred to as the parent site. The COPY FRAGMENT command causes a request to
be sent to the parent site to send a copy. When the request has been processed, the child
site owns a fragment whose contents are the same as the parent as of the time of
transfer. A copy contract is set up at each site, which will cause update streams to be
sent back and forth.

The name of a copy is generated automatically by Mariposa. The hexadecimal value of
the fragment storage id of the copy, which uniquely identifies it, is appended to the first
eight characters of the name of the parent fragment. For example, if a copy of the
fragment WIDGET_MI were made the name of the copy would be something like
WIDGET_M0A3FBC23 .

The syntax for the COPY FRAGMENT command is:
COPY FRAGMENT [READONLY] fragment_name

FROM hostid

UPDATE EVERY period

fragment_name is the name of the fragment at the parent site. The parent site’s hostid
is hostid. period is the amount of time, in seconds, that passes between update
stream sendoffs. If the READONLY option is specified then a read-only copy is made.

3.3.2 Dropping a Copy

Dropping a copy in Mariposa removes the contents of the copy from the database and
cancels the update contract with the parent site. Note: The system will not warn you if
you try to drop the last copy of a fragment.

The syntax for the drop copy command is:
DROP COPY fragname

where fragname is the name of the copy.

3.3.3 Moving a Copy

Since copies are fragments with associated update stream contracts, the MOVE
FRAGMENT command is used to move copies as well as fragments. In the case of copies,
the system takes care of renogotiating the update stream contracts between the other
copy holders and the new copy holder. See Section 3.2.3 for information on moving
fragments.

3.4 MARIPOSA NAME SERVICE

The purpose of name service is to supply client sites with the necessary information to
run queries on remote data. In order to process a query on remote data, Mariposa needs
the queried tables’ metadata at various stages:

Mariposa User Manual v.1.0 44

• During parsing, the syntactic correctness of the query statement has to be
verified. This requires information about the queried tables’ attributes and their
types, about operators used in the query etc.

• The fragmenter needs information about the fragmentation of remote tables.

• The query broker needs to know the location of the remote fragements.

For local tables, this information is stored in the site’s local database catalogs. For
remote tables, a name server provides the information stored in the remote database
catalogs to its clients by replicating the remote catalogs. This replication is achieved by
using the copy mechanism described in Section 3.3.

A Mariposa name server is a regular Mariposa site, which keeps read-only copies of a
subset of the system catalogs of other sites. These copies are maintained by the update
streams sent from the source sites to the name server; as a consequence, information
obtained from a name server will always be out-of-date by a certain amount, just like
copies of regular data. The set of sites whose system tables are on a name server is not
fixed and does not have to include every existing site. The DBA of a site autonomously
determines if that site should also provide name service and which remote sites’ catalogs
it should replicate.

One difference between catalog data and regular user data replication is that the name
server site does not keep the catalog tables from each of the remote sites separated in its
own local tables. Instead, the data of all the remote sites’ tables is merged into a single
set of name server catalog tables. In the current version of Mariposa, only the data from
the catalog tables pg_class, pg_fragment and pg_attribute are replicated; they are stored
in the name server catalog tables pg_nsvcclass, pg_nsvcfrag and pg_nsvcattr.

3.4.1 Setting Up Name Service

Every Mariposa site can be set up to be a Mariposa name server, because every site has
the basic infrastructure needed to provide name service: the replication protocol and the
name server catalog tables. In order to fill the name server tables, the database
administrator has to establish copy contracts with those sites whose system catalogs it
wants to replicate. We call these sites the source sites. The command

SUBSCRIBE METADATA hostID update-interval

sets up a read-only copy contract with the source site indicated by hostID. The data of
the relevant system catalogs is sent from the source to the name server site and is
merged into the name server catalog tables. The source site periodically sends an update
stream to the name server site, which is also applied to the name server catalog tables.

A variation of the SUBSCRIBE METADATA command is the SUBSCRIBE
NAMESERVICE command:

SUBSCRIBE NAMESERVICE hostID update-interval

The SUBSCRIBE METADATA command allows a name server to acquire the data
from the source site’s name server catalog tables. This reduces the overhead of running
name service, because a name server can reuse the data acquired by other name servers.
It would be possible to create a system with one of the name servers having a contract
with every existing client site and all the other name servers simply replicating that
name server’s data.

Mariposa User Manual v.1.0 45

To stop serving the meta data from a particular site, use the UNSUBSCRIBE
METADATA command:

UNSUBSCRIBE METADATA hostID

This cancels the copy contract with the source site and removes its meta data from the
name server’s catalog tables. Similarly, to cancel a SUBSCRIBE NAMESERVICE
command, use UNSUBSCRIBE NAMSERVICE.

3.4.2 Specifying A Primary Name Server

Every site needs to have access to a name server in order to process queries on remote
tables. The primary name server of a site is specified with the command

set nameserver hostID

This site will cause Mariposa to contact the name server indicated by hostID for all
name service information. If a site is itself a name server, it could simply supply its own
host ID. Note that even if a site is a name server, it may use a remote site for its own
name service.

3.5 THE MARIPOSA DATA BROKER

The Mariposa data broker performs data placement, moving and copying fragments, in
response to access patterns. The data broker is a Tcl script, which means that it is easily
modified by Mariposa users. When the site manager process is started, it looks in the
directory $PGDATA/files for a file called databroker.tcl. This file must contain a
procedure called DataBroker, written in Tcl, which accepts no arguments and has no
return value.

The DataBroker procedure is called each time a query is finished running. The query
may have originated locally, or it may be part of a remote query being run on behalf of
another site. The site manager defines a few global Tcl variables that the data broker
can use to make decisions about moving data around. One variable is called hostid
and identifies the local hostid. This is necessary for the data broker to examine whether
data is stored locally or remotely. The other Tcl variable made available to the data
broker is called fragments. It is a Tcl list which describes all of the data fragments
accessed in the query that just ran* . There is one entry in the list for each class accessed
in the query. Each entry is of the form:

{classid logicalid storeid pages tuples {loc 1 loc2... locn} }

The items are explained in Table 7.

* The list will contain information about all fragments of all classes accessed in the query, whether the query

originated locally or not. This gives data brokers running at all sites access to information about which fragments
are being used most often.

Mariposa User Manual v.1.0 46

Item Description

classid The OID (Object Identifier) of the fragment’s class. Shared by all
copies of all fragments of a class.

logicalid The OID shared by all copies of the fragment.

storeid The OID of the fragment at the site where it was accessed for the
current query. Unique to this copy of the fragment.

pages The size of the fragment, in disk pages.

tuples The size of the fragment, in tuples.

loc1 loc2... locn The hostid’s of the storage locations of all copies of the fragment.
loc1 is the hostid of the location where the fragment was accessed
for the current query.

The data broker may use the information in any way it wants. Here is a small data
broker that buys fragments it doesn’t already have the second time they’re accessed.

###

databroker.tcl--

##

set fragmentsAccessed ""

proc DataBroker {} {

 global fragments

 global hostid

global fragmentsAccessed

 # Go through each fragment in the list of fragments

 # accessed. If a fragment has been accessed twice

 # then buy it.

 #

 # Use the fragment’s logicalid to keep track of which

 # fragments have been accessed. Logicalid’s are unique

 # across sites but are the same for copies of the same

 # fragment.

foreach fragment $fragments {

set fraStorageSites [lindex $fragment 5]

If we don’t already have a copy of the fragment at

this site

if {[lsearch $fraStorageSites $hostid] == -1} {

set fralogicalid [lindex $fragment 1]

set listPos [lsearch $fragmentsAccessed $fralogicalid]

If we’ve already seen this fragment before, remove it

from the list of fragments accessed and bring it to

this site using takefragment. Otherwise, record it.

Table 7: Fragment Information for Data Broker

Mariposa User Manual v.1.0 47

if {$listPos > -1} {

set fragmentsAccessed [lreplace $fragmentsAccessed
$listPos $listPos]

set fraclassid [lindex $fragment 0]

set frastoreid [lindex $fragment 2]

set frahostid [lindex $fraStorageSites 0]

takefragment $fraclassid $frastoreid $frahostid

 } else {

lappend fragmentsAccessed $fralogicalid

}

 }

}

We have added two Tcl commands for the data broker: takefragment and
movefragment. The syntax for these commands is:

takefragment <classid> <storeid> <fromhostid>
movefragment <classid> <storeid> <tohostid>

As the names suggest, takefragment takes a fragment from the remote host
indicated by <fromhostid> and installs it locally. movefragment moves a
fragment to the remote host <tohostid>.

3.6 QUERY PROCESSING IN MARIPOSA

As described in Section 1.3, when a user submits a query to Mariposa, it passes through
several modules including a parser, optimizer, fragmenter and so on. The behavior of
some of these modules can be affected by the user to a greater or lesser extent either by
using special Mariposa commands or, in the case of the bidder, by providing the Tcl
script that defines its behavior. This section describes these modules and how a
Mariposa user can change their behavior and thus the behavior of the system.

3.6.1 The Fragmenter

After the Mariposa system accepts a query from a client process, parses it and performs
optimization, the system hands the query, in the form of a query plan, to the fragmenter.
The Mariposa fragmenter module takes a plan that only references whole classes and
produces a plan that reflects the underlying fragmentation of the tables.

In this section, we describe how different fragmented plans can be produced from one
single-site plan, and how to control the fragmentation process.

3.6.1.1 Fragmented Query Plans

After the fragmenter accepts a query plan from the single-site optimizer, it descends to
the leaves of the plan tree, which represent scans over base relations. For example, the
query

SELECT * from EMP, DEPT where EMP.deptno = DEPT.no;

may be converted into the plan tree shown below in Figure 3 by the single-site optimizer
before fragmentation. The base relations are unindexed, so a sequential scan (SS) is
used. The data from each sequential scan is sorted by department number into a
temporary relation, which is scanned before performing the join.

Mariposa User Manual v.1.0 48

JOIN

SS(TEMP1) SS(TEMP2)

SORT

SS(EMP) SS(DEPT)

SORT

As explained in Section 3.2.2, base relations in Mariposa can be partitioned horizontally
into data fragments. Each data fragment contains some fraction of the tuples in the base
relation. Together, the data fragments represent the entire base relation. Each of the
scans in the plan tree is divided into one or more scans, one for each data fragment.

In our example the EMP relation is fragmented into EMP1 EMP2 and EMP3.
Similarly, the DEPT relation is fragmented into DEPT1 and DEPT2. The fragmenter
starts by dividing the sequential scan of EMP into sequential scans of EMP1, EMP2 and
EMP3, and similarly for DEPT. Each of these sequential scans produces a tuple stream.
Tuple streams in Mariposa are merged together into a single stream by inserting a
merge node above them in the plan tree. The merge node takes multiple tuple streams
as input and produces one stream as output.

The fragmenter can produce different plans from one unfragmented plan by inserting
merge nodes at different places in the plan tree. In our example, any of the fragmented
plans shown below in Figure 4 could be produced by the fragmenter. In Fragmented
Plan A, the fragmenter has placed merge nodes directly above the fragmented sequential
scans. In Fragmented Plan B, the sequential scans are first sorted, then merged
together. Since the join in our example requires the input streams to be sorted, the
merge nodes must maintain the sorted order, and so are merge-sort nodes in this plan.
In Fragmented Plan C, each pair of data fragments is scanned, sorted and joined
together, and the resulting streams are merged together.

The placement of merge nodes affects the number of nodes in the fragmented plan and
thereby affects the potential for parallel execution of the plan. In Figure 4, Plan A has
fewer nodes than Plan B, which has fewer than Plan C. Each of the nodes in Plan A
represents more work than each of the nodes in Plan B, with the exception of the
sequential scans. Likewise, the nodes in Plan B represent more work, on average, than
those in Plan C. If the work is divided between multiple servers, Plan C can achieve a
higher degree of parallelism than Plan B, and similarly for Plan B and Plan A.

Figure 3: Unfragmented Query Plan

Mariposa User Manual v.1.0 49

JOIN

SS(TEMP2)

SORT

SS(TEMP1)

SORT

MERGE

SS(DEPT1)SS(EMP1) SS(EMP2) SS(EMP3) SS(DEPT2)

MERGE

SS(DEPT1)SS(EMP1) SS(EMP2) SS(EMP3) SS(DEPT2)

SORT SORT SORT SORT SORT

SS(TEMP1)SS(TEMP2)SS(TEMP3) SS(TEMP4) SS(TEMP5)

MERGE-SORT MERGE-SORT

JOIN

F ragm ented P lan A F ragm en ted P lan B

MERGE

SS(EMP2)

SORT

SS(TEMP9)

JOIN

SS(EMP1)

SORT

SS(TEMP1)

SS(DEPT1)

SORT

SS(TEMP2)

SS(DEPT2)

SORT

SS(TEMP4)

SS(EMP1)

SORT

SS(TEMP3)

SS(EMP2)

SORT

SS(TEMP11)

SS(DEPT1)

SORT

SS(TEMP10)

SS(DEPT2)

SORT

SS(TEMP12)

SS(EMP3)

SORT

SS(TEMP5)

SS(EMP3)

SORT

SS(TEMP7)

SS(DEPT1)

SORT

SS(TEMP6)

SS(DEPT2)

SORT

SS(TEMP8)

JOIN

JOIN JOIN

JOIN JOIN

F rag m ented P lan C

The placement of merge nodes in a plan is controlled by the SQL extension:
 SET FRAGMENTATION <fragmentation factor>;

where <fragmentation factor> is an integer between 0 and 100 inclusive. As
the fragmenter works its way up the plan tree, there are various points at which it may
insert a merge node. At each one, the fragmenter generates a random number between 0
and 100. If the number is greater than the fragmentation factor, the fragmenter inserts a
merge node. If it is less than the fragmentation factor, it does not. Setting the
fragmentation factor to 0 (minimum parallelization) guarantees that the fragmenter will
produce a plan like Fragmented Plan A. Setting it to 100 (maximum parallelization)
guarantees a plan like Plan C. Setting p to a value between 0 and 100 will result in the
fragmenter producing a plan somewhere in between Plan A and Plan C, such as Plan B.

3.6.2 The Query Broker

The Mariposa query broker is responsible for determining the sites at which different
pieces of a query will be processed. The query broker attempts to solve a user’s query as
far under the user’s bid curve as possible. First, it divides the query plan up into plan
chunks. Then it contacts processing sites using either the short or long protocol. If the

Figure 4: The fragmenter can produce different plans from one unfragmented plan by inserting merge nodes at
different places in the plan tree.

Mariposa User Manual v.1.0 50

short protocol is used, the query broker selects the processing site for each plan chunk
without contacting the sites first. If the long protocol is used, the query broker solicits
bids from several processing sites for each plan chunk, then selects the group of bids
that will solve the query and be as far under the bid curve as possible.

In this section, first we explain bid curves. Then, we will discuss plan chunks. Finally,
we discuss the short and long protocols.

3.6.2.1 Bid Curves

A bid curve is a line in two dimensions: cost and delay. Cost can be in any unit,
and delay is in seconds. In this discussion, we will use dollars as the cost unit. By
defining the bid curve, a Mariposa user specifies how much money he or she will pay to
receive an answer within a given amount of time. A user defines a bid curve using the
SQL extension SET BIDCURVE:

SET BIDCURVE cost1, delay1, cost2, delay2

(cost1, delay1) and (cost2, delay2) are two points which define the bid
curve. For example, if the user were willing to pay $100 for an answer within five
seconds, and nothing for an answer after one minute, he or she would use the command:

SET BIDCURVE 100, 5, 0, 60

Which would define the curve shown below.

100

cost

0
0 60

delay

If the user wanted to specify that he or she was willing to pay a maximum of twenty
dollars, no matter how long the query took to be processed, the command would be:

SET BIDCURVE 20, 0, 20, 60

And would result in a bid curve like the one below.

100

cost

0
0 60

delay

Mariposa User Manual v.1.0 51

3.6.2.2 Plan Chunks

After the query broker accepts the fragmented plan from the fragmenter, the first thing it
does is to divide the fragmented plan into a set of non-overlapping subplans, called plan
chunks. Each plan chunk is sent out whole to potential processing sites. Dividing a
plan into many small chunks increases the potential for parallel and pipelined execution
of the plan, while dividing it into a few large chunks decreases potential parallelism and
pipelining.

Continuing with the example from Section 3.6.1, if the fragmenter produced
Fragmented Plan B from Figure 4, Figure 5 shows three of the possible groups of plan
chunks the query broker could produce. In Plan B-1, each plan chunk consists of
exactly one node in the plan tree. Therefore, each node in Plan B-1 could be processed
by a different server. In Plan B-2, the plan chunks are larger; the sequential scan nodes
are grouped with the sort nodes and the sequential scans on temporary relations. The
join node is grouped with the merge-sort nodes. In Plan B-3, the entire query is grouped
into one large plan chunk. Therefore, the entire query will be sent to potential
processing sites.

The size of plan chunks produced by the query broker can be set by the command
set chunksize <chunk-factor>;

where <chunk-factor> is an integer between 0 and 100 inclusive. As the query
broker moves from the leaves of the fragmented plan tree towards the root, it generates a
random number between 0 and 100 at each step. If the number generated is greater than
<chunk-factor>, the plan is cut off at that point and a plan chunk is created. If it is
less than or equal, the process continues. If chunksize is set to 100 (coarsest) the
user is guaranteed to get a plan like B-3 in Figure 5. If granularity is set to 0 (finest) the
user will get a plan like B-1. If it is set in between, the user will get a plan similar to B-
2.

Mariposa User Manual v.1.0 52

SS(DEPT1)SS(EMP1) SS(EMP2) SS(EMP3) SS(DEPT2)

SORT SORT SORT SORT SORT

SS(TEMP1)SS(TEMP2)SS(TEMP3) SS(TEMP4) SS(TEMP5)

MERGE-SORT MERGE-SORT

JOIN

SS(DEPT1)SS(EMP1) SS(EMP2) SS(EMP3) SS(DEPT2)

SORT SORT SORT SORT SORT

SS(TEMP1)SS(TEMP2)SS(TEMP3) SS(TEMP4) SS(TEMP5)

MERGE-SORT MERGE-SORT

JOIN

SS(DEPT1)SS(EMP1) SS(EMP2) SS(EMP3) SS(DEPT2)

SORT SORT SORT SORT SORT

SS(TEMP1)SS(TEMP2)SS(TEMP3) SS(TEMP4) SS(TEMP5)

MERGE-SORT MERGE-SORT

JOIN

B-1 B-2

B-3

3.6.2.3 Bid Protocols

The query broker may follow either the short or long bidding protocol to determine the
site(s) at which a query will be executed. The bid protocol used by the query broker is
set with the SET bidproto command:

SET bidproto ’short’|’long’;

3.6.2.3.1 The Short Protocol

In the short protocol, the query broker sends each plan chunk to a single potential
processing site. In this case, the query broker attempts to select the site most likely to
have won the bidding process had the long protocol been used. The query broker
determines this based on advertising information and statistics it maintains about
previous queries.

Once the query broker has determined which sites it will contact, it returns the query
plan back to the coordinator, indicating which site is to be contacted to process each
plan chunk. The processing site may respond in one of two ways: either by processing
the subquery represented by the plan chunk, or by refusing to do so. In the current
Mariposa implementation, processing sites always agree to perform work requested by
the query broker.

Figure 5: Plan Chunks

Mariposa User Manual v.1.0 53

3.6.2.3.2 The Long Protocol

In the long protocol, the query broker sends each plan chunk to a set of bidder sites,
which are potential processing sites. Each bidder site responds with a bid, which
specifies the cost and delay required to process the subquery. The query broker selects
the best bid for each plan chunk and notifies the losing sites. It then sends the query
plan back to the coordinator as in the short protocol, indicating the processing site for
each plan chunk.

3.6.3 The Bidder

The Mariposa bidder module accepts requests from query brokers to bid on work. Its job
is to determine the amount that the site will charge to process the given query plan
chunk and the expected processing time (delay).

3.6.3.1 Bidding

The bidder’s behavior is controlled entirely by a Tcl script, much like the data broker.
When the site manager process starts up, it looks for a file called bidder.tcl in the
directory $PGDATA/files. bidder.tcl contains the procedure GetQueryBid,
which should take no arguments and return a Tcl list of five elements: response,
price delay staleness and accuracy, as explained in Table 8.

Element Description

response 0 or 1. 1 = Bid. 0 = Refuse to Bid

price The price, in dollars, that this site will charge to process the
query

delay The time, in seconds, for the site to process the query from
the time it starts processing. Delay does not include
network time.

staleness Reserved for future use. For now, it is sufficient to return
the value 0.0

accuracy Reserved for future use. For now, it is sufficient to return
the value 0.0

To change the bidding policy, simply redefine the procedure GetQueryBid. To force the
bidder to reload bidder.tcl, issue the Tcl command ReInitBidder from the site
manager’s TclDMT> prompt.

We have provided some global variables, available to GetQueryBid, which may be
useful in formulating the bid. These are described in Table 9.

Table 8: The bidder’s response

Mariposa User Manual v.1.0 54

Variable Name Value

hostid An integer identifying the ID of the machine the bidder is
running on.

contract The unique ID assigned to this contract by the Site Manager.

plan A string representing the plan tree.

rtable A Tcl list which contains information about the relations
and fragments accessed in the plan.

GetQueryBid may define other global variables and store data in them. These globals
will hold their values across future calls to GetQueryBid and other procedures in this
TclDMT interpreter.

3.6.3.2 The plan and rtable global variables

The plan and rtable variables require some explanation. The variable plan is a
string that represents the plan tree for which the bidder is being asked to formulate a
bid. It is a recursive list of the form:

{ NODETYPE NODENUM {LEFTTREE} {RIGHTTREE} }

where NODETYPE is a string representing the operation, NODENUM is a unique
identifier for the node, and LEFTTREE and RIGHTTREE are the left and right
subplans, respectively. LEFTTREE and RIGHTTREE may be empty. If RIGHTTREE
is empty, LEFTTREE is also empty and the node is a leaf node. If there is a single
subplan, it will be in LEFTTREE.

There is one exception to the above format. Merge nodes, which were first discussed in
Section , may have more than two children. The format for merge nodes is:

{ NODETYPE NODENUM { {CHILD1} {CHILD2}... {CHILDn} } }

where NODETYPE is “MERGE”. The different node types and their explanations are
listed in Table 10.

Table 9. These global variables are made available to GetQueryBid.

Mariposa User Manual v.1.0 55

Node Name Explanation Node Format

MERGEJOIN Merge-Join { MERGEJOIN NODENUM {LEFT-TREE} {RIGHT TREE} }

NESTEDLOOP Nested-Loop Join { NESTEDLOOP NODENUM {LEFT-TREE} {RIGHT TREE} }

SEQSCAN Sequential Scan If over a base relation:
{SEQSCAN NODENUM RTABLE-INDEX FRAG-INDEX {LEFT-TREE} }
If over a temporary relation:
{ SEQSCAN NODENUM -1 {LEFT-TREE} }

SORT Sort { SORT NODENUM {LEFT-TREE} }

MERGE Merge { MERGE NODENUM { CHILD1} { CHILD2} ... { CHILDn }}

XIN Exchange-In* { XIN NODENUM {LEFT-TREE} }

AGG Aggregate, such
as count()

{ AGG NODENUM {LEFT-TREE} }

GROUPBY Group-By node { GROUPBY NODENUM {LEFT-TREE} }

UNKNOWN Mariposa will
fill in UNKNOWN
if the node type
isn’t one it
recognizes.

{ UNKNOWN NODENUM {LEFT-TREE} {RIGHT-TREE} }

The rtable variable is a list of information about the tables referred to in the query
plan. rtable is short for range table, which comes from the SQL syntax “range of
E is EMP”. The range table provides information about the size, location and
fragmentation information of the tables referred to in the query plan. It is in the form:

{ rangeTblEntry rangeTblEntry... }

where each rangeTblEntry is a list:
{ relname refname relid fragInfo }

and fragInfo is a list in which each entry is in the form:
{ fralogicalid frastoreid frapages fratuples storagesites }

and (finally) storagesites is a list in which each entry is of the form:
{ port address hostid }

These entries are described in Table 11.

* These are added to plan trees in between nodes processed at different sites. An Exchange-In node accepts a tuple

stream from a remote site and feeds it into the next node.

Table 10: Plan Nodes in plan variable made available to Bidder

Mariposa User Manual v.1.0 56

Entry Name Description

relname The name of the class.

refname The name used to refer to the class in the query.

relid The OID of the class

fralogicalid The OID shared by all copies of this fragment.

frastoreid The OID for this copy of this fragment

frapages Size of fragment in pages.

fratuples Size of fragment in tuples.

port TCP port (not used)

address Network address of storage site

hostid Hostid of storage site

3.6.3.3 The subcontract Command

In some cases, a bidder will be asked to bid on some operation that it cannot perform. It
can refuse to bid, as mentioned earlier, or it can subcontract out some or all of the work
to another processing site. For example, if a bidder is asked to perform a join between
two classes, A and B, and it has A but not B, it may choose to subcontract out the
sequential scan of B to another site. We have added the command subcontract to
the Tcl provided with Mariposa. The format of the subcontract command is:

subcontract <plan> <contract>

The subcontract returns a list of five elements: response, price, delay,
staleness and accuracy, as described in Table 8. The <plan> passed to
subcontract is any plan variable. It can be the entire string that was passed into the
bidder, or a part of the string representing a subplan. The <contract> passed to
subcontract is the global variable made available to the bidder and described in
Table 9. The Tcl bidder script needs to pass it back to identify the larger plan to which
the subplan belongs.

When a bidder uses the subcontract command, the subplan is passed to the query
broker at the bidder’s site, which contacts potential processing sites, gets their bids, and
returns the best one to the bidder. The bidder can then add the subcontracted price and
delay into its own bid and return a completed bid to the query broker that contacted it
originally. If the bidder site is awarded the bid, the site manager automatically sends
out the subcontracted part of the plan to the appropriate site.

3.6.3.4 Sample Bidder Script

A sample bidder script is included in Appendix A. The first procedure, GetQueryBid,
must be included in all bidder scripts, as mentioned above. This bidder script includes
one procedure for each node type. GetQueryBid calls CostBasedBid to calculate
the cost and delay (this bidder script ignores staleness and accuracy). CostBasedBid
takes the first element in the plan string passed in, which is the node type, and calls the
procedure of the same name. This bidder formulates a bid by recursively visiting the
nodes of the plan tree and assigning a cost and delay to each node. The final bid
returned by CostBasedBid is the sum of the bids for all the nodes in the tree.
GetQueryBid multiplies the cost element in the bid returned by CostBasedBid by
the load average. In addition to the procedures corresponding to the node types, there

Table 11:Entries in rtable variable made available to Bidder

Mariposa User Manual v.1.0 57

are two utility procedures: CombineBids “adds up” two bids and LoadAverage
returns the 5-, 30- and 60-second load averages.

The procedures which calculate a bid for each node type are similar in structure and
function. Each one first passes its children nodes to GetQueryBid and gets a bid
back. Then the delay and cost are calculated on a per-tuple and per-page basis. In
addition to calculating the cost and delay, each procedure also updates the values of the
global variables nTuples, and nPages. nTuples is an estimate of the number of
tuples processed by the query node for which the procedure was called. nPages is the
same thing for the number of pages processed. These two variables are internal to the
example bidder - they are not part of the required bidder interface, like delay and
cost.

The SEQSCAN procedure is more complicated than the others and we discuss it in more
detail. Like the other procedures, it calculates cost and delay on a per-tuple and per-
page basis. However, in addition to the arguments nodeNum and leftTree,
SEQSCAN takes two additional arguments: scanIndex and fragIndex.
scanIndex indicates the element in the range table corresponding to the relation
being scanned. fragIndex indicates the element in the fragInfo list of the range
table entry for the fragment being scanned. They are used by SEQSCAN to access the
correct entries in the global variable rtable. SEQSCAN uses this information to tell
whether the scan is over a base relation or a temporary relation. If the scan is over a
base relation, the information contains fragment storage locations, and number of tuples
and number of pages in the fragment.

If SEQSCAN is called for a temporary relation, it behaves like the other procedures: it
calculates the cost and delay, then passes its child node to GetQueryBid.

If SEQSCAN is called for a base relation, it first checks to see if there is a copy of the
fragment stored locally. If so, it gets the number of tuples and number of pages in the
fragment from the range table. If there is no local copy, SEQSCAN calls
subcontract. Subcontract is a Tcl extension added for Mariposa and is
discussed in the next section.

Mariposa User Manual v.1.0 58

4. ADMINISTERING POSTGRES AND MARIPOSA

This section explains how to run the Mariposa processes, create a Mariposa database,
add and delete users, and perform other administrative functions. This section assumes
that you have already installed Mariposa on each machine on which it will run. If you
have not installed Mariposa, refer to the Installation and Setup Guide.

Even if you are not the administrator of your database, you will find it useful to be
familiar with many of these tasks.

4.1 Frequent Tasks

This section discusses frequently-performed administrative tasks..

4.1.1 Starting the Site Manager

If you did not install POSTGRES exactly as described in the installation instructions,
you may have to perform some additional steps before starting the postmaster
process.

• Even if you were not the person who installed POSTGRES, you should
understand the installation instructions. The installation instructions explain
some important issues with respect to where POSTGRES places some
important files, proper settings for environment variables, etc. that may vary
from one version of POSTGRES to another.

• You must start the postmaster process with the user-id that owns the
installed database files. In most cases, if you have followed the installation
instructions, this will be the user “postgres”. If you do not start the
postmaster with the right user-id, the backend servers that are started by the
postmaster will not be able to read the data.

• Make sure that /usr/local/postgres95/bin is in your shell command
path, because the postmaster will use your PATH to locate POSTGRES
commands.

• Remember to set the environment variable PGDATA to the directory where the
POSTGRES databases are installed. (This variable is more fully explained in
the POSTGRES installation instructions.)

• If you do start the postmaster using non-standard options, such as a
different TCP port number, remember to tell all users so that they can set their
PGPORT environment variable correctly.

Mariposa User Manual v.1.0 59

4.1.2 Shutting Down the Postmaster

If you need to halt the postmaster process, you can use the UNIX kill(1)
command. Some people habitually use the -9 or -KILL option; this should never be
necessary and the POSTGRES group does not recommend that you do this, because the
postmaster will be unable to free its various shared resources, its child processes will
be unable to exit gracefully, etc.

4.1.3 Adding and Removing Users

The createuser and destroyuser commands enable and disable access to
POSTGRES by specific users on the host system.

4.1.4 Periodic Upkeep

The vacuum command should be run on each database periodically. This command
processes deleted instances7 and, more importantly, updates the system statistics
concerning the size of each class. If these statistics are permitted to become out-of-date
and inaccurate, the POSTGRES query optimizer may make extremely poor decisions
with respect to query evaluation strategies. Therefore, you should run vacuum every
night or so (perhaps in a script that is executed by the UNIX cron(1) or at(1)
commands).

Perform frequent backups. That is, you should either back up your database directories
using the POSTGRES copy command and/or the UNIX dump(1) or tar(1)
commands. You may think, “Why am I backing up my database? What about crash
recovery?” One side effect of the POSTGRES “no overwrite” storage manager is that it
is also a “no log” storage manager. That is, the database log stores only abort/commit
data, and this is not enough information to recover the database if the storage medium
(disk) or the database files are corrupted! In other words, if a disk block goes bad or
POSTGRES happens to corrupt a database file, you cannot recover that file. This can be
disastrous if the file is one of the shared catalogs, such as pg_database.

4.1.5 Tuning

Once your users start to load a significant amount of data, you will typically run into
performance problems. POSTGRES is not the fastest DBMS in the world, but many of
the worst problems encountered by users are due to their lack of experience with any
DBMS. Some general tips include:

• Define indices over attributes that are commonly used for qualifications. For
example, if you often execute queries of the form

SELECT * from EMP where salary < 5000

 then a B-tree index on the salary attribute will probably be useful. If scans
involving equality are more common, as in

SELECT * from EMP where salary = 5000

7 This may mean different things depending on the archive mode with which each class has been created. However,

the current implementation of the vacuum command does not perform any compaction or clustering of data.
Therefore, the UNIX files that store each POSTGRES class never shrink and the space reclaimed by vacuum is
never actually reused.

Mariposa User Manual v.1.0 60

 then you should consider defining a hash index on salary. You can define
both, though it will use more disk space and may slow down updates a bit.
Scans using indices are much faster than sequential scans of the entire class.

• Run the vacuum command frequently. This command updates the statistics
that the query optimizer uses to make intelligent decisions; if the statistics are
inaccurate, the system will make inordinately stupid decisions with respect to
the way it joins and scans classes.

• When specifying query qualfications (i.e., the where part of the query), try to
ensure that a clause involving a constant can be turned into one of the form
range_variable operator constant, e.g.,

EMP.salary = 5000

 The POSTGRES query optimizer will only use an index with a constant
qualification of this form. It doesn’t hurt to write the clause as

5000 = EMP.salary

 if the operator (in this case, =) has a commutator operator defined so that
POSTGRES can rewrite the query into the desired form. However, if such an
operator does not exist, POSTGRES will never consider the use of an index.

• When joining several classes together in one query, try to write the join clauses
in a “chained” form, e.g.,

where A.a = B.b and B.b = C.c and ...

 Notice that relatively few clauses refer to a given class and attribute; the clauses
form a linear sequence connecting the attributes, like links in a chain. This is
preferable to a query written in a “star” form, such as

where A.a = B.b and A.a = C.c and ...

 Here, many clauses refer to the same class and attribute (in this case, A.a).
When presented with a query of this form, the POSTGRES query optimizer will
tend to consider far more choices than it should and may run out of memory.

• If you are really desperate to see what query plans look like, you can run the
postmaster with the - d option and then run monitor with the -t
option. The format in which query plans will be printed is hard to read but you
should be able to tell whether any index scans are being performed.

4.2 Infrequent Tasks

At some time or another, every POSTGRES site administrator has to perform all of the
following actions.

4.2.1 Cleaning Up After Crashes

The postgres server and the postmaster run as two different processes. They may
crash separately or together. The housekeeping procedures required to fix one kind of
crash are different from those required to fix the other.

The message you will usually see when the backend server crashes is:
FATAL: no response from backend: detected in ...

Mariposa User Manual v.1.0 61

This generally means one of two things: there is a bug in the POSTGRES server, or
there is a bug in some user code that has been dynamically loaded into POSTGRES. You
should be able to restart your application and resume processing, but there are some
considerations:

• POSTGRES usually dumps a core file (a snapshot of process memory used for
debugging) in the database directory

/usr/local/postgres95/data/base/<database>/core

 on the server machine. If you don’t want to try to debug the problem or produce
a stack trace to report the bug to someone else, you can delete this file (which is
probably around 10MB). (2) When one backend crashes in an uncontrolled
way (i.e., without calling its built-in cleanup routines), the postmaster will
detect this situation, kill all running servers and reinitialize the state shared
among all backends (e.g., the shared buffer pool and locks). If your server
crashed, you will get the “no response” message shown above. If your server
was killed because someone else’s server crashed, you will see the following
message:

I have been signalled by the postmaster.
Some backend process has died unexpectedly and possibly
corrupted shared memory. The current transaction was
aborted, and I am going to exit. Please resend the
last query.—The postgres backend

• Sometimes shared state is not completely cleaned up. Frontend applications
may see errors of the form:

WARN: cannot write block 34 of myclass [mydb] blind

 In this case, you should kill the postmaster and restart it.

• When the system crashes while updating the system catalogs (e.g., when you
are creating a class, defining an index, retrieving into a class, etc.) the B-tree
indices defined on the catalogs are sometimes corrupted. The general (and non-
unique) symptom is that all queries stop working. If you have tried all of the
above steps and nothing else seems to work, try using the reindexdb
command. If reindexdb succeeds but things still don’t work, you have
another problem; if it fails, the system catalogs themselves were almost
certainly corrupted and you will have to go back to your backups.

 The postmaster does not usually crash (it doesn’t do very much except start
servers) but it does happen on occasion. In addition, there are a few cases where
it encounters problems during the reinitialization of shared resources.
Specifically, there are race conditions where the operating system lets the
postmaster free shared resources but then will not permit it to reallocate the
same amount of shared resources (even when there is no contention).

 You will typically have to run the ipcclean command if system errors cause
the postmaster to crash. If this happens, you may find (using the UNIX
ipcs(1) command) that the “postgres” user has shared memory and/or
semaphores allocated even though no postmaster process is running. In this
case, you should run ipcclean as the “postgres” user in order to deallocate
these resources. Be warned that all such resources owned by the “postgres” user
will be deallocated. If you have multiple postmaster processes running on
the same machine, you should kill all of them before running ipcclean

Mariposa User Manual v.1.0 62

(otherwise, they will crash on their own when their shared resources are
suddenly deallocated).

4.2.2 Moving Database Directories

By default, all POSTGRES databases are stored in separate subdirectories under
/usr/local/postgres95/data/base.8 At some point, you may find that you
wish to move one or more databases to another location (e.g., to a filesystem with more
free space).

If you wish to move all of your databases to the new location, you can simply:

1. Kill the postmaster.

2. Copy the entire data directory to the new location. (Making sure that the new files
are owned by user “postgres”).

% cp -rp /usr/local/postgres95/data /new/place/data

1. Reset your PGDATA environment variable (as described earlier in this manual and
in the installation instructions).

using csh or tcsh...
% setenv PGDATA /new/place/data

using sh, ksh or bash...
% PGDATA=/new/place/data; export PGDATA

1. Restart the postmaster.

% postmaster &

1. After you run some queries and are sure that the newly-moved database works, you
can remove the old data directory.

% rm -rf /usr/local/postgres95/data

To install a single database in an alternate directory while leaving all other databases in
place, do the following:

1. Create the database (if it doesn’t already exist) using the createdb command. In the
following steps assume the database is named foo.

2. Kill the postmaster.

3. Copy the directory /usr/local/postgres95/data/base/foo and its
contents to its ultimate destination. It should still be owned by the “postgres” user.

% cp -rp /usr/local/postgres95/data/base/foo /new/place/foo

1. Remove the directory /usr/local/postgres95/data/base/foo:

% rm -rf /usr/local/postgres95/data/base/foo

1. Make a symbolic link from /usr/local/postgres95/data/base to the
new directory:

8 Data for certain classes may be stored elsewhere if a nonstandard storage manager was specified when the classes

were created. Use of nonstandard storage managers is an experimental feature that is not supported outside of
Berkeley.

Mariposa User Manual v.1.0 63

% ln -s /new/place/foo /usr/local/postgres95/data/base/foo

1. Restart the postmaster.

4.2.3 Updating Databases

POSTGRES is a research system. In general, POSTGRES may not retain the same
binary format for the storage of databases from release to release. Therefore, when you
update your POSTGRES software, you will probably also have to modify your databases.
This is a common occurrence with commercial database systems as well. Unfortunately,
unlike commercial systems, POSTGRES does not come with user-friendly utilities to
make your life easier when these updates occur.

In general, you must do the following to update your databases to a new software
release:

• Extensions (such as user-defined types, functions, aggregates, etc.) must be
reloaded by re-executing the SQL CREATE commands. See Appendix A for
more details.

• Data must be dumped from the old classes into ASCII files (using the COPY
command), the new classes created in the new database (using the
CREATETABLE command), and the data reloaded from the ASCII files.

• Rules and views must also be reloaded by re-executing the various CREATE
commands.

You should give any new release a trial period; in particular, do not delete the old
database until you are satisfied that there are no compatibility problems with the new
software. For example, you do not want to discover that a bug in a type’s “input”
(conversion from ASCII) and “output” (conversion to ASCII) routines prevents you from
reloading your data after you have destroyed your old databases. (This should be
standard procedure when updating any software package, but some people try to
economize on disk space without applying enough foresight.)

4.3 Database Security

Most sites that use POSTGRES are educational or research institutions and are
generally not greatly concerned about security in their POSTGRES installations. If
desired, you can install POSTGRES with additional security features, such as the MIT
Kerberos network authentication system. Naturally, such features come with additional
administrative overhead that must be dealt with.

4.3.1 Kerberos

POSTGRES can be configured to use the MIT Kerberos network authentication system.
This prevents outside users from connecting to your databases over the network without
the correct authentication information.

4.4 Querying the System Catalogs

From time to time, you may want to find out what extensions have been added to a given
database. The queries listed below are “canned” queries that you can run on any
database to get simple answers. Before executing any of the queries below, be sure to

Mariposa User Manual v.1.0 64

execute the POSTGRES vacuum command. (The queries will run much more quickly
that way.) Also, note that these queries are also listed in

/usr/local/postgres95/tutorial/syscat.sql

(You can use cut-and-paste (or the \i command) instead of doing a lot of typing.)

This query prints the names of all database administrators and the name of their
database(s).

SELECT usename, datname
FROM pg_user, pg_database
WHERE usesysid = int2in(int4out(datdba))
ORDER BY usename, datname;

This query lists all user-defined classes in the database.
SELECT relname
FROM pg_class
WHERE relkind = ‘r’—not indices
and relname !~ ‘^pg_’—not catalogs
and relname !~ ‘^Inv’—not large objects
ORDER BY relname;

This query lists all simple indices (i.e., those that are not defined over a function of
several attributes).

SELECT bc.relname AS class_name,
ic.relname AS index_name,
a.attname
FROM pg_class bc, -- base class
pg_class ic, -- index class
pg_index i,
pg_attribute a—att in base
WHERE i.indrelid = bc.oid
and i.indexrelid = ic.oid
and i.indkey[0] = a.attnum
and a.attrelid = bc.oid
and i.indproc = ‘0’::oid—no functional indices
ORDER BY class_name, index_name, attname;

This query prints a report of the user-defined attributes and their types for all user-
defined classes in the database.

SELECT c.relname, a.attname, t.typname
FROM pg_class c, pg_attribute a, pg_type t
WHERE c.relkind = ‘r’—no indices
and c.relname !~ ‘^pg_’—no catalogs
and c.relname !~ ‘^Inv’—no large objects
and a.attnum > 0 -- no system att’s
and a.attrelid = c.oid
and a.atttypid = t.oid
ORDER BY relname, attname;

This query lists all user-defined base types (not including array types).
SELECT u.usename, t.typname
FROM pg_type t, pg_user u
WHERE u.usesysid = int2in(int4out(t.typowner))
and t.typrelid = ‘0’::oid—no complex types
and t.typelem = ‘0’::oid—no arrays
and u.usename <> ‘postgres’
ORDER BY usename, typname;

Mariposa User Manual v.1.0 65

This query lists all left-unary (post-fix) operators.
SELECT o.oprname AS left_unary,
right.typname AS operand,
result.typname AS return_type
FROM pg_operator o, pg_type right, pg_type result
WHERE o.oprkind = ‘l’—left unary
and o.oprright = right.oid
and o.oprresult = result.oid
ORDER BY operand;

This query lists all right-unary (pre-fix) operators.
SELECT o.oprname AS right_unary,
left.typname AS operand,
result.typname AS return_type
FROM pg_operator o, pg_type left, pg_type result
WHERE o.oprkind = ‘r’—right unary
and o.oprleft = left.oid
and o.oprresult = result.oid
ORDER BY operand;

This query lists all binary operators.
SELECT o.oprname AS binary_op,
left.typname AS left_opr,
right.typname AS right_opr,
result.typname AS return_type
FROM pg_operator o, pg_type left, pg_type right, pg_type
result
WHERE o.oprkind = ‘b’—binary
and o.oprleft = left.oid
and o.oprright = right.oid
and o.oprresult = result.oid
ORDER BY left_opr, right_opr;

This query returns the name, number of arguments (parameters) and return type of all
user-defined C functions. The same query can be used to find all built-in C functions if
you change the “C” to “internal”, or all SQL functions if you change the “C” to
“postquel”.

SELECT p.proname, p.pronargs, t.typname
FROM pg_proc p, pg_language l, pg_type t
WHERE p.prolang = l.oid
and p.prorettype = t.oid
and l.lanname = ‘c’
ORDER BY proname;

This query lists all of the aggregate functions that have been installed and the types to
which they can be applied. count is not included because it can take any type as its
argument.

SELECT a.aggname, t.typname
FROM pg_aggregate a, pg_type t
WHERE a.aggbasetype = t.oid
ORDER BY aggname, typname;

This query lists all of the operator classes that can be used with each access method as
well as the operators that can be used with the respective operator classes.

SELECT am.amname, opc.opcname, opr.oprname
FROM pg_am am, pg_amop amop, pg_opclass opc, pg_operator opr
WHERE amop.amopid = am.oid

Mariposa User Manual v.1.0 66

and amop.amopclaid = opc.oid
and amop.amopopr = opr.oid
ORDER BY amname, opcname, oprname;

Mariposa User Manual v.1.0 67

Appendices

A. Sample Bidder Script

This bidder script is in ‘$PGDATA/base/files/bidder.tcl’. It gives an idea of how a cost-
based bidder might be constructed. It looks at each node in the query plan passed in and
charges a fixed amount at each node per page and/or per tuple. It multiplies the cost
element of the bid by the current load average.

###

bidder.tcl

#

Input: plan tree, represented as a string

Output: list containing {response cost delay staleness accuracy}

#

response: BID if all data fragments references in the

query are local. REFUSETOBID otherwise.

#

cost: Based on the per-tuple and per-page charge for

each node in the query plan

#

delay: Based on the per-tuple and per-page delay for

each node in the query plan

#

staleness, accuracy: ignored

#

Recursively descends the plan tree, keeping track of the number of pages

and number of tuples generated, and adding up the cost and delay until

the root is reached. At this point, the total cost and total delay have

been calculated. Multiplies cost by the current load average. Ignores

staleness and accuracy.

###

Global variables

set BID 1

set REFUSETOBID 0

#--

LoadAverage: Utility routine

#

Input: void

Output: 5-, 30-, and 60-second load averages

#--

proc LoadAverage {} {

set result [exec uptime]

set len [llength $result]

set result [lrange $result [expr "$len - 3"] [expr "$len - 1"]]

regsub -all , $result "" res2

return $res2

}

Mariposa User Manual v.1.0 68

#--

#

CombineBids

#

Input: two bids, bid1 and bid2

#

Output: bid that results from combining bid1 and bid2:

#

response: BID if both bid1 and bid2 responses are BID

REFUSETOBID otherwise

#

cost: bid1.cost + bid2.cost

#

delay: bid1.delay + bid2.delay

#

staleness: MAX(bid1.staleness, bid2.staleness)

#

accuracy: MIN(bid1.accuracy, bid2.accuracy)

#

#--

proc CombineBids {bid1 bid2} {

global BID REFUSETOBID

set response1 [lindex $bid1 0]

set response2 [lindex $bid2 0]

set cost1 [lindex $bid1 1]

set cost2 [lindex $bid2 1]

set delay1 [lindex $bid1 2]

set delay2 [lindex $bid2 2]

set stale1 [lindex $bid1 3]

set stale2 [lindex $bid2 3]

set acc1 [lindex $bid1 4]

set acc2 [lindex $bid2 4]

set response [expr ($response1 && $response2) ? $BID : $REFUSETOBID]

set cost [expr $cost1 + $cost2]

set delay [expr $delay1 + $delay2]

set stale [expr ($stale1 > $stale2) ? $stale1 : $stale2]

set acc [expr ($acc1 < $acc2) ? $acc1 : $acc2]

return [list $response $cost $delay $stale $acc]

}

Mariposa User Manual v.1.0 69

#--

#

MERGEJOIN

#

Input: left sub-tree, right sub-tree

#

Output: bid

#

Updates nTuples and nPages - guesses one match for each outer

tuple.

#--

proc MERGEJOIN {nodeNum leftTree rightTree {junk {}} } {

global BID REFUSETOBID

global nTuples

global nPages

global rtable

global hostid

set perTupleCharge .001

set perTupleDelay .000400

set leftSubBid [CostBasedBid $leftTree]

set leftTuples $nTuples

set leftPages $nPages

set rightSubBid [CostBasedBid $rightTree]

set rightTuples $nTuples

set rightPages $nPages

Fill in arbitrary values if nothing is known about

the results of the join’s children.

if {$leftTuples == 0} {

set leftTuples 10000

}

if {$rightTuples == 0} {

set rightTuples 10000

}

if {$leftPages == 0} {

set leftPages 100

}

if {$rightPages == 0} {

set rightPages 100

}

Each outer and inner tuple is touched once.

set delay [expr ($leftTuples + $rightTuples) * $perTupleDelay]

set cost [expr ($leftTuples + $rightTuples) * $perTupleCharge]

Wild guess - one match for each outer tuple

set nTuples $leftTuples

set bid [CombineBids $leftSubBid $rightSubBid]

set bid [CombineBids $bid [list $BID $cost $delay 0.0 0.0]]

return $bid

}

Mariposa User Manual v.1.0 70

#--

#

NESTEDLOOP

#

Input: left sub-tree, right sub-tree

#

Output: bid

#

Updates nTuples and nPages - guesses one match for each outer

tuple.

#--

proc NESTEDLOOP {nodeNum leftTree rightTree {junk {}} } {

global BID REFUSETOBID

global nTuples

global nPages

global rtable

global hostid

set perTupleCharge .001

set perTupleDelay .000400

set leftSubBid [CostBasedBid $leftT ree]

set leftTuples $nTuples

set leftPages $nPages

set rightSubBid [CostBasedBid $rightTree]

set rightTuples $nTuples

set rightPages $nPages

Each inner tuple is touched once per outer tuple.

set delay [expr ($leftTuples * $rightTuples) * $perTupleDelay]

set cost [expr ($leftTuples * $rightTuples) * $perTupleCharge]

Wild guess - one match for each outer tuple

set nTuples $leftTuples

set bid [CombineBids $leftSubBid $rightSubBid]

set bid [CombineBids $bid [list $BID $cost $delay 0.0 0.0]]

return $bid

}

Mariposa User Manual v.1.0 71

#--

SEQSCAN

Input: scanIndex, fragIndex, left sub-tree

Output: bid

#

Updates nTuples and nPages based on information in range table.

#

#--

proc SEQSCAN {nodeNum scanIndex fragIndex {leftTree {}} } {

global BID REFUSETOBID

global contract

global nTuples

global nPages

global rtable

global hostid

no extra charge per tuple

set perTupleCharge 0

5 cents per page

set perPageCharge .05

delay in seconds per tuple retrieved (not including disk I/O)

set perTupleDelay .000600

delay in seconds per disk page accessed

set perPageDelay .002200

Scan on a temporary relation, the result of a sort,

join, etc. Just use the values of nTuples and nPages

generated so far.

if {$scanIndex == -1} {

set nTuples 10000

set nPages 100

set cost [expr $nTuples * $perTupleCharge + $nPages * $perPageCharge]

set delay [expr $nTuples * $perTupleDelay + $nPages * $perPageDelay]

set bid [CombineBids "$BID $cost $delay 0.0 0.0" [CostBasedBid $leftTree]]

return $bid

} else {

Scan on a base relation - set nTuples and nPages

from rtable information.

Only bid if the fragment is stored at this site.

set rte [lindex $rtable $scanIndex]

set frags [lindex $rte 3]

set fInfo [lindex $frags $fragIndex]

Determine if one of the storage sites is this one.

set storageSites [lindex $fInfo 4]

set local false

foreach site $storageSites {

set storageHost [lindex $site 2]

if {$storageHost == $hostid} {

set local true

break

}

}

Mariposa User Manual v.1.0 72

set nTuples [lindex $fInfo 3]

set nPages [lindex $fInfo 2]

If sequential scan is over a fragment that we own, bid on it.

Otherwise, subcontract out the sequential scan to another site.

if {$local} {

set response $BID

set cost [expr $nTuples * $perTupleCharge + $nPages * $perPageCharge]

set delay [expr $nTuples * $perTupleDelay + $nPages * $perPageD elay]

} else {

set subPlan "{SEQSCAN $nodeNum $scanIndex $fragIndex}"

set subBid [subcontract $subPlan $contract]

set response [lindex $subBid 0]

set cost [lindex $subBid 1]

set delay [lindex $subBid 2]

}

}

return [list $response $cost $delay 0.0 0.0]

}

#--

#

SORT

#

Input: left subtree

Output: bid

#

Charges a fixed price per tuple and per page.

#--

proc SORT {nodeNum {leftTree {}} {junk {}} {junk2 {}} } {

global BID REFUSETOBID

global nTuples

global nPages

global rtable

global hostid

set perTupleCharge .001

set perTupleDelay .000400

set leftSubBid [CostBasedBid $leftTree]

set leftTuples $nTuples

if {$leftTuples == 0} {

set leftTuples 10000

set nTuples 10000

}

set cost [expr $leftTuples * $perTupleCharge]

set delay [expr $leftTuples * $perTupleDelay]

set bid "$BID $cost $delay 0.0 0.0"

set bid [CombineBids $leftSubBid $bid]

return $bid

}

Mariposa User Manual v.1.0 73

#--

#

MERGE

#

Input: nodeNum, children nodes

Output: bid

#

Charges a fixed price per tuple for the merge.

#

#--

proc MERGE {nodeNum subTreeList {junk {}} {junk2 {}} } {

global BID REFUSETOBID

global nTuples

global nPages

global rtable

global hostid

set perTupleCharge .001

set perTupleDelay .000400

set bid [list $BID 0.0 0.0 0.0 0.0]

set mergeTuples 0

set mergePages 0

For each child node, get the bid for the subplan and

combine it with the current bid. Keep track of the

number of tuples and pages in the children nodes.

foreach subPlan $subTreeList {

set bid [CombineBids $bid [CostBasedBid $subPlan]]

incr mergeTuples $nTuples

incr mergePages $nPages

}

set cost [expr $mergeTuples * $perTupleCharge]

set delay [expr $mergeTuples * $perTupleDelay]

set bid [CombineBids $bid [list $BID $cost $dela y 0.0 0.0]]

return $bid

}

#--

#

XIN

#

Input: nodeNum, leftTree

Output: bid

#

Charges a fixed price per tuple

#--

proc XIN {nodeNum leftTree {junk {}} {junk2 {}} } {

global BID REFUSETOBID

global nTuples

set perTupleCharge .001

set perTupleDelay .000400

set leftSubBid [CostBasedBid $leftTree]

set leftTuples $nTuples

if {$leftTuples == 0} {

Mariposa User Manual v.1.0 74

set leftTuples 10000

set nTuples 10000

}

set cost [expr $leftTuples * $perTupleCharge]

set delay [expr $leftTuples * $perTupleDelay]

set bid "$BID $cost $delay 0.0 0.0"

set bid [CombineBids $leftSubBid $bid]

return $bid

}

#--

#

AGG

#

Input: nodeNum, left subtree

Output: bid

#--

proc AGG {nodeNum leftTree {junk {}} {junk2 {}} } {

global BID REFUSETOBID

global nTuples

set perTupleCharge .001

set perTupleDelay .000400

set leftSubBid [CostBasedBid $leftTree]

set leftTuples $nTuples

if {$leftTuples == 0} {

set leftTuples 10000

set nTuples 10000

}

set cost [expr $leftTuples * $perTupleCharge]

set delay [expr $leftTuples * $perTupleDelay]

set bid "$BID $cost $delay 0.0 0.0"

set bid [CombineBids $leftSubBid $bid]

return $bid

}

#--

#

GROUPBY

#

Input: nodeNum, left subtree

Output: bid

#--

proc GROUPBY {nodeNum leftTree {junk {}} {junk2 {}} } {

global BID REFUSETOBID

global nTuples

set perTupleCharge .001

set perTupleDelay .000400

set leftSubBid [CostBasedBid $leftTree]

set leftTuples $nTuples

Mariposa User Manual v.1.0 75

if {$leftTuples == 0} {

set leftTuples 10000

set nTuples 10000

}

set cost [expr $leftTuples * $perTupleCharge]

set delay [expr $leftTuples * $perTupleDelay]

set bid "$BID $cost $delay 0.0 0.0"

set bid [CombineBids $leftSubBid $bid]

return $bid

}

#--

#

UNKNOWN

#

Don’t bid on plans that contain nodes we can’t identify.

#

#--

proc UNKNOWN {nodeNum leftTree rightTree {junk {}} } {

global BID REFUSETOBID

return [list $REFUSETOBID 0 0 0 0]

}

#--

#

CostBasedBid

#

Input: query plan

#

Output: bid

#

Main procedure. Looks at token representing the node type and calls

the appropriate bidding routine.

#

#--

proc CostBasedBid {plan} {

global rtable

global hostid

global contract

global nTuples

global nPages

global BID REFUSETOBID

if {$plan != ""} {

set nodeType [lindex $plan 0]

set bid [$nodeType [lindex $plan 1] [lindex $plan 2] [lindex $plan 3]
[lindex $plan 4]]

} else {

set bid [list $BID 0 0 0 0]

}

return $bid

}

Mariposa User Manual v.1.0 76

#--

#

GetQueryBid

#

Input: query plan

Output: bid

#

Main procedure. Calls CostBasedBid and multiplies result by current

load average

#--

proc GetQueryBid {plan} {

global rtable

global hostid

global contract

global nTuples

global nPages

global BID REFUSETOBID

set bid [CostBasedBid $plan]

set las [exec uptime]

set len [llength $las]

set result [lrange $las [expr "$len - 3"] [expr "$len - 1"]]

regsub -all , $las "" las

set la [lindex $las 2]

set cost [lindex $bid 1]

set cost [expr "$cost * (1 + $la)"]

set bid [lreplace $bid 1 1 $cost]

return $bid

}

